WSClean

Release git

André Offringa

Jun 20, 2022

Getting started

1.1

1.2

1.3 Installation instructions
1.4

1.5

1.6

1.7

Weighting

2.1

2.2

2.3 Multi-frequency weighting
2.4

Introduction
Changelogs

Generalusage

Basiccleaning L.
Prediction. L L.

Image weighting
Tapering

Weightrank filter

Imaging modes

3.1 Making image cubes

3.2

3.3 w-snapshot algorithm

34

3.5 Baseline-dependent averaging
3.6 Continuing a deconvolution
3.7 Distributed imaging

3.8 Primary beam correction
3.9 Facet-based imaging
Gridding modes

4.1 Image domain gridding

4.2

4.3 Combining pointings

4.4

A-Term correction

W-gridding o

Deconvolution modes

5.1
52
53
54
5.5
5.6
5.7

Masks and auto-masking
Local RMS thresholding
Wideband deconvolution
Polarimetric deconvolution
Rotation-measure (RM) synthesis

Multi-scale cleaning

IUWT compressed sensing

Snapshotimaging

chgeentre L oo

CONTENTS

9

5.8 MORESANE deconvolution 0 i i e e e e e e e e
5.9 Parallel deconvolution e e e e e e e

Results & problems

6.1 Imagingartefacts L e e e e e e e
6.2 Divergingclean. e e e e e e e e e e e
Technical details

7.1 Component listS o . e e e e e e e e e e e e e
7.2 Weighting and gridding e e e e e e e e
7.3 Restoringbeamssize e e e
7.4 Polarizations and weights oL L e
7.5 FITSkeywords o o o o e e e e e
7.6 Computational performance e e e e e e e e e
7.7 w-stackinginterface L L e e e e e e e e e
7.8 Storing imaging weights oL
7.9 DSOregionfile
Further information

8.1 Citing WSClean e e e e e e e
Navigate

87
87
87

89
89
90
92
92
93
94
96
96
97

101
101

103

WSClean, Release git

This is the official WSClean manual. The latest version of WSClean can be found at https://gitlab.com/aroffringa/
wsclean/.

If you use WSClean for scientific work, please cite the appropriate paper(s).

Contents:

CONTENTS 1

https://gitlab.com/aroffringa/wsclean/
https://gitlab.com/aroffringa/wsclean/

WSClean, Release git

2 CONTENTS

CHAPTER
ONE

GETTING STARTED

1.1 Introduction

WSClean stands for “w-stacking clean”. W-stacking is an alternative to the w-projection algorithm, in which the
uv-samples are not convolved with a w-term correcting kernel before the FFT, but are instead corrected with a multipli-
cation after the FFT. Multiplying each pixel is generally much faster than convolving an image, but the downside is that
samples can not be added together on one grid until the w-term has been corrected. This means that in w-stacking, each
w-layer needs to be stored and FFT-ed individually. The result is that w-stacking requires more memory and spends
relative more time doing the FFTs, instead of gridding+convolving.

It turns out that for many telescopes, the WSClean approach is a very good trade-off, and WSClean is typically an order
of magnitude faster than Casa’s w-projection on MWA data. It can also handle full-sky 10k x 10k images on which
Casa runs out of memory. WSClean with the same number of layers is at least as accurate as w-projection. In tests it
seems even to be slightly more accurate, probably because there is no need to trim down a convolution kernel. See the
further information page for more references.

Next chapter: General usage

1.2 Change logs

1.2.1 Version 3 releases

WSClean version 3 is the current major release number. It is in development since 2021. Stable releases:

WSClean version 3.1

Released 2022-04-01
New/changed dependencies:
* To make use of IDG, WSClean 3.1 requires IDG version 1.0 or newer.
* To make use of EveryBeam, WSClean 3.1 requires EveryBeam version 0.3.1.

Summary: Facet-based imaging is significantly improved, and now supports applying per-facet solutions (from H5Parm
files) and beam corrections (from EveryBeam). Stokes-I-only imaging with IDG imaging is now significantly faster.
WSClean 3.1 also adds experimental support for GMRT primary beam correction.

https://git.astron.nl/RD/idg/-/releases/1.0.0
https://git.astron.nl/RD/EveryBeam/-/releases/v0.3.1

WSClean, Release git

Major & visible changes

 Support time-direction baseline-dependently averaged data from DP3.

* Reduce disk-access during IDG Stokes I imaging by not storing XY/YX to disk, and enable the faster IDG Stokes
I mode when possible.

* Automatically use the primary beam corrected image (. . . -pb. fits) file when predicting with beam correction.
¢ Cache average beam to disk in IDG mode to reduce memory usage.

* Add support for the GMRT beam (scientific validation still in progress).

* Add a beam-normalisation-mode option to control EveryBeam’s normalisation mode.

 Support multiple h5 files in facetting mode.

¢ Introduce -pb-grid-size and deprecate -pb-undersampling.

Bug fixes

* Report error when user asks for incorrect channel selection.

* Fix certain selection parameters that no longer worked in reorder mode (e.g. even/odd timestep selection).
* Correctly normalize reported flux levels for squared channels.
¢ Fix a crash with the -reuse-dirty option in certain modes.

* Fix segmentation fault when using -reuse-psf with IDG.

* Fix masked parallel deconvolution.

* Fix beam + H5 solution application in facetting mode.

* Fix possible -facet-regions mismatch with HSParms.

* Support differential lofar beam in facet-based imaging.

* Support scalar gain corrections in facet-based imaging.

* Do not apply beam or solutions to PSF in facet-based imaging.
* Fix unset threadcount value in imageweights class.

* Fix [IUWT. Because of code clean-ups in Nov 2020, the [IUWT deconvolution option was no longer producing
correct results.

* Fix channel selection issue for non-uniform multi-SPW sets (#79).
* Fix channel selection issue for multi-SPW set with no-mf-weighting (#105).
* Fix rare crash caused by uninitialized array.

* Fix compilation on hurd-i386.

4 Chapter 1. Getting started

WSClean, Release git

Other significant code changes

WSClean now requires a compiler that supports C++17.

Add support for gcc versions 11 and 12.

Lots of refactoring.

Preparations to split off deconvolution code as a separate reusable module.
Several documentation improvements / updates.

Better support and error reporting for missing git submodules.

Many new unit and system tests.

WSClean version 3.0

Released 2021-08-26

New/changed dependencies:

To make use of IDG, WSClean 3.0 requires IDG version 0.8 or newer.

To make use of EveryBeam, WSClean 3.0 requires EveryBeam 0.2. Using EveryBeam 0.3 (or newer) results in
compilation errors.

Summary: This is a major release containing many new features and bug fixes. The biggest new feature in this release
is facetting, which runs the gridder for smaller parts of the image, stitches those parts and runs deconvolution on the
resulting image. Not all facetting functionality is finished as of yet (see the facetting documentation). Upcoming
releases will add more functionality to facetted imaging. Two other significant features are deconvolution with forced
spectra and the ability to write deconvolution scripts in Python.

Major & visible changes

Facetted imaging.

Use EveryBeam for calculation of all instrumental primary beams. This implies that EveryBeam is now re-
quired to apply beams from instruments like LOFAR, MWA, JVLA, ATCA, etc.

Make it possible to call Python deconvolution implementations (parameter -python-deconvolution).
New feature to force spectra from an external image (parameter -force-spectrum).

New option -deconvolution-threads to limit the number of threads (and associated memory) used in decon-
volution.

New option -wgridding-accuracy to tweak the accuracy of the wgridder.

New option -primary-beam-1limit to set the level at which to trim the beam.

New option -simulate-baseline-noise to perform simulations with baseline-specific noise values.
Support for SKA beams (through EveryBeam).

Phase shifting (not rotating) is now done inside wsclean and does not require (or allow!) shifting with
chgcentre (see chgcentre documentation for the changes).

Allow distributed multi-polarization imaging with IDG (also fixes #56).
Major speed improvements in deconvolution and various other places.

chgcentre is now part of the wsclean package.

1.2. Change logs 5

https://git.astron.nl/RD/idg/-/releases/0.8
https://git.astron.nl/RD/EveryBeam/-/releases/v0.2.0
https://git.astron.nl/RD/EveryBeam

WSClean, Release git

Bug fixes

* Various fixes to deconvolution channel weighting; improves stability of deconvolution when channels are missing
(includes fixing #71).

 Fix openmpi distributed imaging of very large images (>2”31 bytes per image) (#13).
* Fix PSF problem when using tapers, as noted by P. Serra (#134).

* Fix horizon treatment in the W-gridder.

* Avoid an extra major iteration when using auto-masking and niter is reached.

* Make it possible to read measurement sets with a varying number of channels (#18).
* Fix writing of imaging weight spectrum column, reported by L. Bester.

 Improve allocation of IDG buffers, improves performance and memory usage on very large memory machines
(#2).

* Make sure wsclean-mp is installed during make install.

¢ Avoid use of python2’s print a for MWA beam finding (#23).

* Allow combining the w-gridder with -parallel-gridding.

* Fix hang during beam generation (#32).

» Improve console output in various ways (includes #60).

* Fix bug that causes aterms not to be correctly applied in wsclean-mp.

* Fix hanging wsclean-mp when only one node is available.

* Solve crash when using large RMS windows.

* Fix setting of MPI compile flags/options.

* When given an odd image size, increase it to an even size.

* Avoid uninitialized value when first channel has zero weight, fixing a possible image corruption.
* Erase reordered MS data BEFORE reordering next timestep. Not after. Reported by O. Smirnov (#55).
* Fix predict timer (#9).

* Solve crash in empty predict when using the wgridder (#66).

¢ Fix -reuse-primary-beam.

Other significant code changes

* Use of git submodules for common code (aocommon, pybind11, schaapcommon).
* Add Gitlab continuous integration script & large increase of automated tests.

» Format and check code with clang-format.

* Lots of restructuring and code cleaning.

» Update of wgridder to the most recent version.

* Remove use of boost thread.

¢ Let deconvolution use single precision (#29).

* Improve dijkstra’s algorithm to improve deconvolution performance.

6 Chapter 1. Getting started

WSClean, Release git

* Make channel interpolation use multiple threads to improve deconvolution performance.
* Add several dockerfiles to the repository to build containers.
* Use -fvisibility=hidden to disable pybind11 compilation warnings.

* Parellellize RMSImage: : SlidingMinimum and calculating the image weights to improve start-up and deconvo-
lution performance.

* Reimplement and parallelize FFTConvolver, improving speed of various tasks.
* As always, various documentation improvements.

* Changelog for WSClean 3.1 (202x-XX-XX)

e Changelog for WSClean 3.0 (2021-08-26)

1.2.2 Version 2 releases

WSClean version 2 was in development between 2016 and 2021. Stable releases:

WSClean version 2.10

Released 2020-07-15
WSClean 2.10 depends on IDG version 0.7 or newer.

Summary of changes: WSClean can now run on multiple nodes using MPI. Several new methods for calculating a-terms
were added: position-delta screens, better kernel windowing, gridding with the VLA beam and joint deconvolution of
multibeam/PAF systems (which was demonstrated using Apertif).

This is the last version that is released via SourceForge. Future development will move to GitLab: https://gitlab.com/
aroffringa/wsclean.

Major & visible changes:
* Support for distributed computing using MPI
* Support for “position shift screens” (dldm-screens) during a-correction gridding
* Support for joint deconvolution of PAF / multi-beam observations
* More windowing options for a-correction kernels, defaults now to “raisen Hann”
e The VLA beam has been implemented
* Support imaging of multiple fields
¢ Add parameter -multiscale-max-scales
* Restore source component models using -restore-list
Bug fixes & other changes:
* Properly weigh channels when averaging with user-set deconvolution channels.
* WSClean could iterate infinitely when first multiscale scale is not 0

GCC 10 fixes

* Improved error reporting

* Fix inversion timing

1.2. Change logs 7

https://gitlab.com/astron-idg/idg/-/tags/0.7
https://gitlab.com/aroffringa/wsclean
https://gitlab.com/aroffringa/wsclean

WSClean, Release git

WSClean version 2.9

Released 2020-03-27
WSClean 2.9 is released together with IDG version 0.7.

Summary of changes: WSClean+IDG is now much faster, in particular with fast-changing aterms. The combination
of WSClean 2.9 + IDG 0.7 supports the efficient use of GPUs to grid large data volumes with complex a-terms. Fur-
thermore, a new gridder that is more accurate compared to the default w-stacking gridder, and for some cases also
faster! (in particular large images, many visibilities). The plan is also to move WSClean to Github in the next version
of thereafter.

Major & visible changes:

Add new gridder “wgridder”, a stand-alone gridder written by Martin Reinecke that is now integrated in WS-
Clean.

Applying a second aterm to all antennas is possible by setting dimension of antenna axis to one in aterm fits file.
Make source list output possible in IDG.

The FFTs are now performed with floats instead of doubles, thereby descreasing memory usage by 2 and increas-
ing the speed anywhere from 20-100%.

LOFAR image-based beam correction (i.e. no aterm correction) now uses full Mueller matrix calculations instead
of Jones, which removes some biases in beam correction that were seen.

New options -reuse-psf and reuse-dirty to skip these steps when they already exist.

WSClean makes use of IDG’s API changes to allocate optimal buffer sizes, greatly increasing the speed of IDG,
and solving allocation problems on low-mem platforms

When parallel deconvolution is used, the logging is now much improved: only one thread reports its full progress.

Correct smallest multi-scale scale when using Gaussian tapering. Multi-scale cleaning was using just the longest
baseline for determining the smallest scale to clean with. This causes tapered imaging to almost never use the
smallest scale.

Add a ‘dry run’ mode, requested by J. Morgan. Fixes #162.

Bug fixes & other changes:

Stokes V imaging with R/L pols results in zero image (reported by Chiara Stuardi)

Don’t allow direct MS access for multi spw sets, to prevent a deadlock.

Output error when trying to combine parallelgridding with IDG.

Don’t incorrectly apply the average beam when using idg + apply-primary-beam.

Support newer casacore versions.

Remove dependency on boost thread.

Image the gridding kernel as option was removed, as both IDG and WGridder don’t support it.
Fix beam calculation for 1 timestep mses

Fix a crash when using pb correction + deconvolution channels

Solve reported problem with HDF5/Intel compilation

Chapter 1. Getting started

https://gitlab.com/astron-idg/idg/-/tags/0.7

WSClean, Release git

WSClean version 2.8

Released 2019-09-16
WSClean 2.8 is released together with IDG version 0.6. Together, these two new versions bring a ton of bug fixes.

Summary of changes: The combination of WSClean 2.8 + IDG 0.6 allows for the first time all major imaging use-cases,
including a-term corrections (screens of diagonal Jones matrices, TEC values or beam corrections), fast GPU and CPU
gridding of really large images together with all deconvolution methods. In WSClean, much work was done to allow
parallel deconvolution in all major modes, thereby speeding up the deconvolution by an order of magnitude. Fixing
(SF #116) improved multi-scale convergence & stability.

Major & visible changes:
» Use a better multiscale convolution padding by default (SF #116).
* Implemented -local-rms in combination with parallel cleaning
* Implemented source list output in combination with parallel cleaning
* Add a -horizon-mask parameter to automatically mask out emission beyond the horizon
* Option -direct-allocation added for experimenting with skipping the image buffer allocator
¢ Allow a-terms to have a frequency axis
Bug fixes & other changes:

* Multi-channel deconvolution bug causing multi-channel imaging to use the automask of channel 0. Reported by
P. Serra.

* Fixed issued when using the combination of multiscale + auto mask + paparallel deconvolution (many identified
by F. De Gasperin).

* Fixed issue causing parallel deconvolution to stay in infinite loop when niter low.

* Fix predict crash when image size not specified

¢ Fix non-parallel cleaning in two cases (local rms and saving source lists wouldn’t work properly anymore).
* Fixing bug when using indivisable nr of deconvolution channels

» Using -channel-range caused wrong behaviour or exception.

* Remove requirement on boost threads.

* Solve bug in reordering of multi-interval imaging, causing a tempfiles not found error.

* Improved some error messages and spelling.

* Solve crash in LOFAR beam creation

* Fix hang when creating a primary beam

WSClean version 2.7

Released 2019-04-18
WSClean 2.7 can be compiled together with IDG version 0.5.

Summary of changes: This is a major release with many new functions. Imaging with IDG has matured to a fully
functional form, providing speed improvements and new features: It is now possible to grid with beams from several
arrays, as well as with a-term screens and gain solutions by using IDG. This has shown excellent results to correct
for DD effects. The MWA and ATCA beams have been implemented, gridding different channels can be parallelized

1.2. Change logs 9

https://gitlab.com/astron-idg/idg/tags/0.6
https://gitlab.com/astron-idg/idg/tags/0.5

WSClean, Release git

which majorly speeds up multi-frequency imaging, a direct FT option was implemented, the default accuracy has been
increased while at the same time imaging has become faster, and finally many small isues were solved.

Major & visible changes:

WSClean now implements the AARTFAAC, the MWA and the ATCA (ATCA_16 band) beam.

Imaging tasks can be run in parallel, which greatly speeds up multi-frequency imaging in normal w-stacking
mode.

Reordering can also be in parallel now, but remains experimental as casacore sometimes causes race bug.
Several ways to apply direction dependent effect during the gridding with IDG:
— LOFAR & MWA beam gridding
— TEC screens
— “Generic” solution gain screens
— Any combination of the above.
Calculate average IDG beam and output pb corrected images.
Option to set IDG beam update rate (-beam-aterm-update).
Option to set a-term kernel size (-aterm-kernel-size).
Allow saving of a-term screens (-save-aterms).
IDG settings can now be specified in a separate config file.
Add countdown system to multiscale algorithm to prevent iterating too many times around the stopping criterium.

The first residual image is no longer saved by default; new option -save-first-residual can enable old
behaviour.

Determine correct beam automatically from LOFAR beam keywords stored by DP3 in data column.
Implemented option -use-weights-as-taper (after communication with V. Mahatma).

Option -direct-ft implements a fully accurate direct FT.

Several new gridding kernels (implemented for EoR gridding accuracy paper).

New option to set location of MWA hS5 file manually (-mwa-path).

Add option -nwlayers-factor to make it easier to increase w-term accuracy.

Increased default oversampling factor to 1023.

Bugfixes / technical changes:

When using temporary directory, an ending slash in the ms name would lead to incorrect temporary filenames,
causing multi-ms imaging to fail.

Always resample tec/gain screens onto the correct a-term kernel resolution (reported by T. Hodgson, see IDG
ticket 12).

Output error when frequency axis is not correct (reported by F. De Gasperin).

Fix by M. Mevius to be able to predict LOFAR beam at NCP.

Store model files with Jy/px units.

Fix several compilation errors, including when using newer gccs and Casacore versions
LOFAR centroid gridding was removed.

Increase size of bounding box for Gaussians in multiscale.

10

Chapter 1. Getting started

https://gitlab.com/astron-idg/idg/issues/12
https://gitlab.com/astron-idg/idg/issues/12

WSClean, Release git

* Make sure that reversed channels work when using small inversion optimization (ATCA sets seem to (some-
times?) have the frequency channels in reverse (low index = high frequency)).

* Fix prediction issue when manually setting nwlayers.
¢ Clear cache between imaging of different intervals (SF #146), reported by J. Morgan).
* Don’t restore NaN components to avoid corrupting pb mf image (Reported by C. Riseley).

* Foundations for multi-node distribution were implemented.

WSClean version 2.6

Released 2018-06-11

Summary: A “lots of little improvements” update, with no major changes at this time. Interesting new features are
some very specific cleaning modes, like linked polarizations and parallel cleaning.

Major & visible changes:

* Support for “parallell cleaning” (option ‘-parallel-clean’), which splits up images using a path search algo-
rithm, and allows faster and clean and larger images.

* Polarization-linked cleaning (’-1link-polarizations’), which allows cleaning a set polarizations using infor-
mation from another set of polarizations (e.g. clean QUV only using I information).

* Support for calculating AARTFAAC primary beam.

 Tapering is now taken into account in the initial value of the PSF, thereby improving fit stability on tapered runs
(SF #134, reported by P. Serra)

¢ Circular and non-circular Gaussian fitter improvements (related to SF #134).
* Added option ‘-beam-fitting-size’ to allow changing the fitting box size (useful for MSSS).

* Added option ‘-divide-channels-by-gaps’, which changes how bandwidth is splitted in multiple-output-
channels mode.

* Adding option ‘-pb-undersampling’ to turn off or change undersampling.

* Added parameter ‘-lofar-centroids’, which takes centroid information into account. This was an experiment,
and seemed not to be very useful (it is very slow and does not improve accuracy).

* WSClean can now grid only the even or odd timesteps (parameters ‘-even-timesteps’ and
‘-odd-timesteps’). Useful for certain experiments, e.g. estimating noise value (SF #133).

e Option ‘-no-normalize-for-weighting’ was removed, as keywords can be used to scale images appropri-
ately.

» Accept 3d fits masks that have velocity instead of frequency as 3rd axis (reported by M. Ramatsoku).
* Provide an error message when automasking threshold <= auto threshold.
* Removing -force-dynamic-join option, as it is no longer necessary to specify it.
* IDG command line parameters have been added to the command line help.
Bugfixes / technical changes:
* CMake findcasacore script updated to fix unresolved symbols with certain Casacore versions.
* Model column was not updated when using ‘-continue’ (reported by R. van Weeren and G. Di Gennaro).

* One-off error in calculating of nr scans, and reporting proper error when requesting more intervals than available
(SF #131, reported by S. Bourke)

1.2. Change logs 11

WSClean, Release git

* When writing model data back to MS, progress bar did not actually show progress.

» Threading and mutexes are now done with (C++11) the stdlib. This decreases the dependency on Boosts.

* Fixed gcc 7.3 compilation: pow 10 was removed from gee 7.3 (glibe 2.27).

* Fixed unit weighting to not include flagged/unavailable visibilities during imaging when used.

* Preparations for IDG A-term correction: no longer store visibilities preweighted, pass full weighting to IDG.
* Do output errors in quiet mode.

* Don’t allow rectangular images when IDG is enabled.

 Improved readability of non-verbose mode a bit; be less verbose for sets with denormal phase centre and removed
some other technical output.

* Reported nr of major iterations was one too high (on cmdline as well as in fits hdr).
¢ Invalid floating point cmd line parameters are reported as error instead of interpreting them as zero.

¢ Independent QU imaging with multiple channels would not clean U: weight was not initialized (reported by R.
van Weeren).

* Also fixing bad keyword “‘WSCMINOR'’ in dirty image of second polarization.

* Lofar beam correction with only-I imaging causes segfault (Identified by A. Shulevski).

WSClean version 2.5

Released 2017-12-01

Summary: The previous release was about half a year old, but the long period between these releases has resulted in
many improvements: a few major and a very large number of minor improvements. Full support for the fast IDG GPU
gridder is one of the major changes, making it possible to make enormous images quickly, and clean them with all of
WSClean’s cleaning options. Future releases will additionally support fast a-term correction. Spectral line users can
now use multi-frequency masks. Users no longer have to think about padding (/trimming): padding space is now by
default added to the requested image size. This has resulted in the removal of the -trim parameter, which I realise
will unfortunately require changes to a few pipelines. Another visible change is that many parameters were slightly
changed, to make their syntax/wording be consistent. The old parameters are still accepted, but will result in deprecation
warnings.

To use IDG, the external IDG library is required. See the installation instructions for help on linking WSClean with
IDG.

Full list of new features:

* WSClean has now full support for the “IDG” GPU gridder. It allows the making of huge images in a fraction
of the time of imaging with the old w-stacking gridder. Moreover, in the future it will support a-term correction
without any additional computational costs (SF #84, SF #122, SF #123).

* It is now possible to use a 3-dimensional (multi-frequency) mask, in particular useful for line/HI imaging (SF
#47, requested by S. Makhathini and P. Serra).

* New option -padding, which replaced -trim. Default padding is 1.2. Changing meaning of -size to mean the
trimmed size. This makes -size more intuitive, and will in most cases no longer require to think about padding
(SF #100).

* Made parameters consistent: all parameters now use the same “dashing scheme” (SF #124).
¢ Write version information to fits file (SF #120).

* It is now possible to store the image weights that WSClean calculates (SF #126, requested by O. Smirnov).

12 Chapter 1. Getting started

https://abi-laboratory.pro/tracker/changelog/glibc/2.27/log.html

WSClean, Release git

Allow ‘mas’ as unit for milliarcseconds.

Bugfixes:

(LOFAR) primary beam correction works now with baseline-dependent averaging (SF #92)
Fixing threshold & reported flux in XX/YY or XX/XY/YX/YY cleaning (SF #51).

Use of auto-masking on sets that have fully flagged output channels would cause segfault. This occurs in partic-
ular in spectral line imaging (reported by S. MakHathini).

Correcting WSCNORMF keyword with a factor of 4. This makes the meaning of WSCNORMF equal to the number
of cells gridded (when uniformly weighted).

Fixed a possible stability issue in [IUWT (SF #118).

Fixes for compilation on Mac (avoiding sincos, M_PI1, expl0).

Documentation improvements.

Make sure that values are not divided by zero when part of the image is zero and local rms is used.

No longer forcing the restoring beam to be larger than 1 pixel, which could lead to bad flux scales with very
exotic beams (SF #113).

Speed improvement: the min/maxuv/ws values are now cached between major iterations, which saves going an
extra time over the data each major iteration (SF #26).

The PB corrected source list output works now together with reduced deconvolution channels (SF #125).

Some technical low-level fixes:

Use of boost::optional to represent incorrect values, thereby avoid NaN values and allowing the use of
-ffast-math, although no change in performance (SF #95).

Use of unique_ptr instead of pointers everywhere relevant.

Added r-value support to lane.

Several small memory leaks were fixed, e.g. in polynomialfitter.

Several new tests were added.

Improvements to the Python interface; better data type validation.

Improvements to buffer allocator, so that 0-sized allocation do not cause warning on WSClean exit.

Work on applying the LOFAR beam a-terms with IDG. This is almost finished, but not yet available in this
release.

Speed improvement: Made sure that nr of threads to be used by nwlayer gridder is not more than nlayers.

Fixed rare issue: exceptions could cause early destruction of image buffer allocator to segfault instead of show
exception.

Correct displaying of NaN value for flux density (Jy) values.

1.2. Change logs 13

WSClean, Release git

WSClean version 2.4

Released 2017-05-28

Summary: Version 2.4 mostly contains small improvements on various points. Improved source component output
allows better integration with (DD and DI) self-calibration pipelines, and continued work on the integration with IDG
is aiming towards a fast, full A-correction imager.

New features:

Option -save-source-1list to save a component list including Gaussians for multi-scale components. The
output format is supported by DPPP. Old option -save-component-1ist has been removed.

Source lists can be primary-beam corrected by combining -save-source-1ist with -apply-primary-beam
(SF #111).

Added keywords TELESCOP, OBSERVER and OBJECT to fits output (SF #112).
Fitting a Gaussian to the PSF is now more stable, and deals better with border cases (reported by G . Heald).

Multi-frequency cleaning will now properly take channel weights into account during spectral fitting and peak
finding (SF #109)

Flux density values are now reported with sensible units, and units can be given on the cmdline (SF #104).

WSClean will by default now stop deconvolution after 20 major iterations, which can be changed with the new
option -nmiter (SF #117, requested by N. Hurley Walker).

Option -save-psf-pb to be able to get a corrected PSF.

Option -circularbeam now properly performs a constrained fit (SF #55).
Option -multiscale-convolution-padding to change the default padding.
WSClean now reports the reason for stopping cleaning.

Slight increase of gridding speed, because X and Y dimensions of gridding kernel are now stored separately.
Larger oversampling rates are now also supported.

Bugfixes:

Parameter -stopnegative was ignored since the new generalized cleaning algorithm was implemented (re-
ported by N. Hurley-Walker and C. Tremblay).

In multi-scale, joined polarizations mode, WSClean could not determine scale sizes when last channel has no
unflagged visibilities (Reported by R. van Weeren).

In joined polarization mode, WSClean could continuously perform further major iterations without improving
the residuals any further (reported by N. Hurley-Walker).

Deprecated parameter name -rms-background, which was renamed to -local-rms.
Fixes for IDG gridding; CPU and GPU gridding & cleaning with IDG works.

Version information now includes availability of IDG.

More unit tests.

Support proper displaying of negative angles.

Refactoring of primary beam correction code.

14

Chapter 1. Getting started

WSClean, Release git

WSClean Version 2.3

Released 2017-03-01

Summary: The most prominent new feature is local RMS thresholding using either an automatically generated RMS
map or by providing an RMS map. When using multi-scale clean, a component list using Gaussians can now be
requested. This release also fixes some larger bugs that had been introduced in the Hogbom/generalized Clark clean
transition, so I recommend to upgrade.

New features:

e Local RMS thresholding, options -rms-background, -rms-background-window and
-rms-background-method (SF #102, SF #105).

» Use channel weights when fitting spectral polynomials. This helps in particular to properly ignore missing chan-
nels, which would formerly cause bad fits (SF #107).

* Option -save-component-1list for outputting the Gaussian component lists in multi-scale clean.

» Improve speed of multi-scale clean, by setting the clark masking threshold lower than the stopping threshold in
the subminor loop optimization.

* Added a -multiscale-shape parameter to either select Gaussians or a tapered squared function.

* WSClean now ships with an example program wsuvbinning to produce a csv file with binned visibilities, prop-
erly normalized to values in Jy (requested by C. Spingola).

* Fits files now contain a sum-of-visibility-weights keyword WSCVWSUM which can be used to calculate the nr vis
per uv bin (this is required to use the wsuvbinning tool).

Bugfixes:
* Rectangular images (i.e., width != height) caused cleaning to fail.
* Crash when performing full XX/XY/YX/YY imaging, causing missing MFS files. Reported by T. Franzen.
* Bug in -intervalsout; interval index would not increase, causing each next index to overwrite the previous index.

 Segfault when chosing an odd image size and enabling beam correction, reported by M. Iacobelli. Caused by
FFTW not properly supporting unaligned r2c fft.

» Segmentation fault when auto-masking with multiple output intervals.
* Some improvements to the IDG connection.

* Work on a polynomial channel fitter as described in the WSClean multi-scale clean paper, which in the end will
allow better multi-frequency fitting. This is not finished, see ticket (SF #110).

* On some platforms, parsing any integer command line parameter resulted in an exception (fixed between 2.2.0
and 2.2.1).

WSClean Version 2.2

Released 2017-01-20

Summary: This version improves the speed of Hogbom clean and joined clean significantly, improves the stability
of multi-scale clean, and replaces several specialized cleaning methods by one generic algorithm that makes several
features work in all clean modes.

New features:

* Use the Clark optimization (Clark 1980) in Hogbom clean and joined clean, which typically speeds up cleaning
by a factor of ~5 (SF #14).

1.2. Change logs 15

http://adsabs.harvard.edu/abs/1980A%26A....89..377C

WSClean, Release git

* Faster multi-scale clean, by adding option -multiscale-gain and setting it to 0.2 by default.
* Turned the weight rank filter on by default with a value of 3.0.
* Auto-masking works now also in Hogbom clean mode (SF #101).

 Refactored cleaning algorithms to use the same code for single-scale cleaning, which makes all generic param-
eters work now in all cleaning modes (e.g. -deconvolution-channels and -squared-channel-joining;
(SF #58).

Bugfixes:
* Report an error when invalid characters are used in integer parameters, like -niter 1le5.

* Multi-scale clean will no longer put large-scale kernels through the image edge, which makes the algorithm more
stable (#103).

e Perform FFT convolutions with padding in Multiscale fast subminor optimization and Clark optimization in
normal clean, which improves stability.

* Make auto-masking work without specifying an auto-threshold.

» Fixing possible race condition in inversion code of the gridder.

* Always use C++11 versions of lane and uvector.

* Removed old code for old ‘fast multi-scale algorithm’ which did not work as well.
* Optimized clean functions in ImageSet class when only one image is cleaned.

* Adding test utilities for Hogbom clean.

¢ Cleaning up of code using cppcheck.

WSClean Version 2.1

Released 2016-12-19

Summary: This version adds important enhancements to multi-scale clean. Deep cleaning (>=100k - 1M iterations) of
large images with multi-scale clean is now 5-10 times faster in sets where deconvolution is the bottleneck. Furthermore,
an automatic masking feature using auto-mask is now available in multi-scale clean, which allows automated deep
cleaning. Together with auto-threshold, it makes deep cleaning quite easy. A typical run now looks something like
this:

wsclean -auto-threshold 0.3 -auto-mask 3 \
-niter 1000000 -mgain 0.8 -multiscale \
-size 4096 4096 -trim 3072 3072 -scale 30asec \
obs.ms...

This cleans to 3 sigma and keeps track of what components at what scales are cleaned. Once a maximum 3 sigma peak
is reached, it will turn this information into a scale-dependent mask, such from then on, only components/scales are
selected that were already found, and continues cleaning up to 0.3 sigma. This typically is good enough to only show
residuals caused by calibration errors and noise.

New features:
¢ Automatic masking with -auto-mask parameter.
* Much faster multi-scale algorithm (can be disabled with -no-multiscale-fast-subminor).
» Parameter ‘-restore’ can be used to restore a model image on a residual image (SF #71).

e Parameter ‘-help’ was added.

16 Chapter 1. Getting started

WSClean, Release git

In prediction-only mode, the image size and scale is now read from the fits file, instead of requiring manually
setting the size and scale (SF #97).

Bugfixes:

For linear polarizations, the signs of Stokes Q and V have been flipped! The polarization labelled X now rep-
resents N-S instead of E-W. After much debate, it was agreed that this is the proper Casacore Measurement set
convention, even though it is different in UVFits files and importuvfits will not rotate the polarization angle.

Make sure compilation succeeds when no SSE is available

When all w-values are set exactly to zero, w-stacking would fail (Reported by B. van der Tol).

Major refactoring of fits writing code (SF #94).

Improved FITS keywords of UV fits files (SF #96).

Better input parameter checking and improved error messages.

Added information about whether lofar beam lib was found to output of -version.

WSClean now requires -size and -scale to be set, instead of using default values when they are not set.

Improve output and cleaning up of WSClean when an exception occurs.

WSClean Version 2.0

Released 2016-11-04

Summary: This version adds baseline-based averaging, a feature that can improve the computational performance of
imaging. Two other new features are -auto-threshold: using a threshold relative to the noise level; and -continue
to start off where a previous deconvolution finished. Furthermore, quite a lot of small bugs were fixed.

New features:

Fixes:

Baseline-based averaging) (SF #85).

Option -continue to continue a previous run (SF #79).

Option -auto-threshold to calculate the threshold from the residual noise level.
Option -spws to select which bands to image (SF #83).

Primary beam correction for MF image. Primary beam corrected versions of the residual and model images are
saved too (SF #82, requested by T. Shimwell).

Option -simulate-noise to perform a noise-only simulation.
Connection to the Image Domain Gridder (IDG) is finished, testing continues.
Cleaned up FITS keywords, added keyword “‘WSCNORMF"’ to allow easier PS normalization (SF #75).

WSClean unit tests are now shipped in the distribution and can be run with ‘make check’.

Use no cleaning border when a trimmed size is specified (SF #81).

Frequency headers in FITS file were wrong for datasets with multiple spectral windows (reported by R. van
Weeren).

Channel width not set in fits if input has 1 channel (SF #87, reported by S. Bourke).
Incorrect frequency headers in PSFs (SF #93).

Incorrect frequency headers when imaging multi-spw sets (SF #90, reported by R. van Weeren).

1.2. Change logs 17

WSClean, Release git

« Fitting of MFS image fails when highest frequency is flagged (reported by K. Emig).
* Fix for imaging sets with reversed channels, which seems common for Miriad sets (Reported by L. Pratley).

* Adding error message when requesting joined channels but not requesting more than one output channel (sug-
gested by F. de Gasperin).

* Solving bad deconvolution accuracy when single polarizations are flagged.

* Improved speed of convolving the model with the restoring beam.

* LOFAR beam did not use the right ra,dec in the first instance of beam creation.
» Update help of -beamsize, -beamshape and -theoreticbeam.

* Make sure that primary beam is not updated faster than the integration time (Reported by A. Nilsson).
* Fixed crash when applying beam on multi-channel set

* Fixed compilation of the ‘operator’ library interface for connecting with custom deconvolution algorithms.
 Enabled fast math for gridder (although no significant change in speed).

* Fixed compilation on a Mac.

 Better validation and error repporting of input.

¢ Some refactoring.

e Changelog for WSClean 2.10 (2020-07-15)

* Changelog for WSClean 2.9 (2020-03-27)

* Changelog for WSClean 2.8 (2019-09-16)

e Changelog for WSClean 2.7 (2019-04-19)

* Changelog for WSClean 2.6 (2018-06-11)

* Changelog for WSClean 2.5 (2017-12-01)

* Changelog for WSClean 2.4 (2017-05-28)

e Changelog for WSClean 2.3 (2017-03-01)

e Changelog for WSClean 2.2 (2017-01-20)

e Changelog for WSClean 2.1 (2016-12-19)

e Changelog for WSClean 2.0 (2016-11-04)

1.2.3 Version 1 releases

WSClean Version 1.12

Released 2016-07-09

Summary: No major feature enhancements, but many small improvements and fixes. Differential LOFAR beam is
probably the biggest new feature, while some new deconvolution modes can improve RM-synthesis imaging.

New features:
 Support correction of the differential LOFAR beam instead of full beam.

e Option -squared-channel-joining for [using the channel-squared values during peak find-
ing](RMSynthesis), instead of channel-summed.

18 Chapter 1. Getting started

WSClean, Release git

Option to turn off dirty image creation (-no-dirty).

Adding WSCNVIS and WSCENVIS keywords to fits files.

During imaging, WSClean now outputs the ‘effective visibility count’.

Rewrote dft prediction algorithm, it is now possible to use NDPPP for prediction.

Adding cleaned flux to output when performing multi-scale clean (requested by A. G. de Bruyn).

Better determination of available number of CPUs, to make WSClean cooperate with cluster management tools
like SLURM (Using CPU affinity code from J. D. Mol).

Support for masks in the [IUWT deconvolution method.

Adding time to output when requested new parameter with -1log-time (SF #76).

Changed behaviour of SPWs to not count unused SPWs in calculation of output channels (Requested by R. van
Weeren).

Model data corrupted when using -predict because of bug in contiguous MS writer (SF #78).

Issue with -predict mode — prediction no longer used the kaiser bessel kernel, because of an unset value.
Use WEIGHT column if WEIGHT_SPECTRUM is not available (SF #73).

Fully flagged output channels causes joined cleaning to malfunction (reported by K. Emig).

Increased precision of fits keywords to have double precision for RA and DEC output, otherwise VLBI observa-
tions have slightly inaccurate positions (Reported by R. Dean).

Issue with [IUWT in combination with -deconvolution-channels, reported by O. Smirnov.
Some usual refactoring and fixes for newer compilers.
Some preparation to allow IDG as gridder.

Imaging multiple polarizations in multi-frequency, multi-spw modes would lead to an error (reported by R. van
Weeren).

WSClean Version 1.11

Released 2016-03-11

Summary: This version adds primary beam correction for LOFAR and uses a stronger default anti-aliasing kernel (SF
#76). The new kernel decreases the chance of sources far out appearing as ghost sources, but increases the noise added
near the borders of the image. It is recommended to trim the borders with the -trim option.

Full list of changes:

New feature: Correct Stokes I or IQUV images with the LOFAR primary beam (SF #70).

New feature: Option -multiscale-scales to select scales that are to be used in multiscale (SF #72).
New feature: Rectangular images (i.e. non-square images) can now be made (SF #49).

New feature: Report multiscale clean statistics (SF #69).

New feature: Added option -make-psf-only and renamed -makepsf to -make-psf.

New feature: Rectangular gridding function added, option -gridmode rect.

Bugfix: Improved default anti-aliasing kernel, uses Kaiser-Bessel parameter of 8 instead of 3 (SF #67).

1.2. Change logs 19

WSClean, Release git

Bugfix: Fix calculation of theoretic beam and max/min w-values when multiple measurement sets are specified
(reported by R. van Weeren).

Bugfix: PSF normalization bug, now always normalizing the PSF to be unitary in the centre. Only affected
large/high-w-term images (reported by O. Smirnov).

Bugfix: Improved Casacore CMake scripts to improve compatibility with different Casacore setups (reported by
T. J. Dijkema).

Bugfix: Non-normalized images for power spectrum creation should be multiplied by 2 for correct unit-level UV
values.

Bugfix: Delay opening of measurement set in PartionedMS to have less files open.
Bugfix: Fixing possible valgrind warning in FitsReader.

Bugfix: Adding error message when specifying invalid trim size (noted by M. Iacobelli).
Bugfix: Better error check when something is wrong with the data selection and/or scale.
Bugfix: Multi-frequency modes do not work when channels are reversed (SF #68).
Fixing possible leaking of FITS cio file handlers during reading

Some refactoring (SF #46).

Textual: Some help fixes.

In the mean time, chgcentre 1.3 and 1.4 were also released. For version 1.3, chgcentre was converted to work with
casacore 2. Version 1.4 solves an issue when trying to rotate a set with denormal phase centre (option -shift-back)
for the second time (requested by M. Rioja).

WSClean Version 1.10

Released 2015-12-12

Summary: New features include several tapering options, new multi-frequency deconvolution strategies that impose
spectral smoothness in a fast way. Furthermore, lots of small improvements were made and some bugs were solved.

Note that WSClean needs Casacore 2.0 or higher, with C++11 support turned on (since WSClean 1.9).

Full list of changes:

Implemented a Gaussian taper (SF #62; option “-taper-gaussian”).
Implemented a “don’t grid near the uv-plane-edge” taper (“-taper-edge”).

Implemented Tukey tapers: inner, outer (uv-distance; these have a circular shape) and edge (distance to uv-plane-

CLINNTS CEINY3

border; these have a square shape) taper, options “-taper-tukey”, “-taper-inner-tukey”, “-taper-edge-tukey”. See
tapering.

Support for fitting a spectral function during joined channel deconvolution in multiscale, [IUWT and normal
cleaning was added. Linear and power-law fitting is supported. (SF #36)

Decrease frequency resolution during cleaning (option “~-deconvolution-channels”), and interpolate up/down to
imaging frequency resolution with a given spectral function (SF #57).

New option “~trim” to trim the output image before cleaning & writing to fits, to avoid noisy borders.
Added option “-nwlayers-for-size” to calculate automatic nwlayers for a different size.
Some work on linearly-interpolated spectral fitting.

The low-level Python “operator” API has been extended with more documentation, it is fully tested and has been
tested with RESOLVE.

20

Chapter 1. Getting started

WSClean, Release git

* Write the dirty MFS image when using -channelsout != 1.

* Added option ‘“-subtract-model”, to subtract the initial model from the data and allow re-imaging an already
cleaned set (SF #53).

e The MFS PFS is now fitted with the beam, and beam keywords are added to the other MFS images (SF #42).

* Render the MFS model onto the MFS residual image to create the MFS restored image, such that the MFS
restored image matches the fitted MFS beam.

» Allowing ‘spectral moresane’: The spectral fitting and deconvolution channel parameters can now be used to run
Moresane (requested by O. Smirnov).

* Measurement sets with multiple SPWs are correctly handled (SF #37).
» Added options -quiet and -verbose to modify verbosity (SF #60).

* Bugfix: Major bug in multi-frequency multi-scale cleaning; peak finding was not always performed on sum of
channels and reported fluxes were wrong.

* Bugfix: Updating the model data after reordering when -channelrange is specified would write to wrong channels
(reported by O. Smirnov).

* Adding option “-theoreticbeam”, never use the theoretic beam otherwise (SF #43)
* Bugfix: Multiscale crashes with multiple polarizations without joining (SF #52)
* Bugfix: Incorrect evaluation of angles specified in radians — WSClean would actually assume radians are asec.

* Bugfix: Joined cleaning would no longer honour mgain and continue cleaning to threshold when initial peak is
negative.

¢ Bugfix: Bug in trimming (“-trim ...”") with CS iterations; untrim was broken.
* Bugfix: In the small inversion optimization, always pick an image size that is easily factorizable (SF #65).
* Bugfix: incorrect documentation for -predict (Reported by F. de Gasperin).

* Bugfix: Compilation errors with WSClean using older LOFAR beamresponse library (SF #56; reported by A.
van Amersfoort and A. Horneffer).

WSClean Version 1.9

Released 2015-08-21

Summary: This release introduces some major changes, both under and above the hood. First of all, there are two
new deconvolution methods: /UWT deconvolution, which is similar to MORESANE), and a new multi-scale algorithm
that is much more accurate than the previous algorithm. The ‘channelsout’ multi-frequency option now treats multi-

measurement-set imaging properly. Finally, all combinations of “-joinchannels”, “-joinpolarizations”, “-channelsout”,
“-pol ..”, “-juwt” and “-multiscale” that one can possibly wish are supported.

Note that WSClean now needs Casacore 2.0 or higher, with C++11 support turned on.
Full list of changes:

e New multi-scale algorithm which is more accurate, somewhat slower in most cases, but still fast. Enabled with
option “-multiscale”.

* The older algorithm is now available with option “-fast-multiscale”, but should probably not be used for anything
serious.

e The multi-scale mode now supports masks (SF #38).

* A new IUWT compressed sensing algorithm which is comparable to MORESANE, but allows multi-frequency
deconvolution and is faster on CPU.

1.2. Change logs 21

WSClean, Release git

Support dividing total bandpass using -channelsout when specifying multiple MSs of different frequencies. (SF
#44)

Rewrote the deconvolution code to use the generic ImagingTable. This allows jointly cleaning over less common
polarizations combinations (e.g. Stokes I and Q) as well as cleaning channels jointly without jointly cleaning the
polarizations. (SF #39)

WSClean’s gridding engine (class WStackingGridder) has been refactored, and it is now possible to reuse the
gridder (API docs).

Add -moresane-sl parameter to set MORESANE deconvolution depth levels per iteration (patch by O. Smirnov).
Code was converted to Casacore 2: version 2 or higher compiled with C++11 support is now required.

Bugfix: Add prefix to MORESANE input filenames, to avoid clashes with parallell imaging runs (SF #48, patch
by O. Smirnov).

Bugfix: Conversion from circular to Stokes Q, and from Stokes to circular was not implemented (/correctly).
Cotton-Schwab iterations are now possible with circular feeds (e.g. JVLA). (SF #45)

Bugfix: Report error when specifying invalid channel range.

Bugfix: Removing -imaginarypart parameter from wsclean’s help, as it has been replaced (way back) by com-
bined real/imag imaging for xy/yx.

Bugfix: Make it easier to build with platform independence (SF #50).

Bugfix: WSClean could crash on zero-length selection (either because of no rows in the selection or no channels
in selection).

Bugfix: Better error message when mmap fails.

Bugfix: Changing console output of prediction step to correspond with FTs/prediction stage, and removing re-
dundant ‘Rows that were required’ output

Lots of cleaning up and renaming.

WSClean Version 1.8

Released 2015-05-21

Summary: The new weight rank filter allows uniform weighting with better noise properties. Programming interfaces
to use the inversion engine of WSClean and a simple Python interface to call WSClean were added. A lot of bugs were
fixed; many small ones but also pretty big ones, including incorrect flux scaling for very wide images.

Full list of changes:

Adding weighting rank filter options “-weightingrankfilter” and “-weighting-rank-filter-size”.
This decreases the weight of uv-samples with very few samples in it, thereby decreasing the noise in the im-
age (with no effect on the beam).

New option “-~-saveuv”, which stores the gridded uv data & sampling function after w-correction .

Added a C interface to use the WSClean inversion/prediction algorithm as an operator, useful for testing com-
pressed sensing algorithms.

Added a Python interface to enable calling WSClean from Python code, both as an operator (like the C interface)
or the whole imaging algorithm.

Setting default behaviour to prefer reordering also when mgain!=1.0.

Support masks in Moresane deconvolution.

22

Chapter 1. Getting started

http://wsclean.sourceforge.net/doc/api/classWStackingGridder.html

WSClean, Release git

Bugfix: Removing sqrt(1-1*2-m”2) normalization. This changes the flux scaling of wide field imaging
(>~20deg), which used to be wrong. Reported by S. Bourke and M. Eastwood; see SF #35 for more info (SF
#35)

Bugfix: Crashes when cleaning near the horizon, caused by incorrect bounding box calculation during restoring.
Reported by S. Bourke. (SF #33)

Bugfix: With natural weighting, the uv-1 cuts did not work. Uniform, Briggs and Natural weighting now follow
the same code path for determing the weight.

Bugfix: Issues with beam keywords and restoration in multi-channel runs. (SF #41, related to SF #42)

Bugfix: Fixing polarization keyword in model FITS files when using joined polarization and/or channel cleaning
(reported by D. Rafferty).

Bugfix: Integrated “MFS” images have wrong phase centre keywords when using chgcentre -shiftback

Bugfix: When no reordering is performed, NaNs in an MS would still be counted in calculating the total weight
(but they should not).

Bugfix: Making sure first threshold in multiscale cleaning is not negative, which would lead to a diverging clean
Bugfix: A bug that could cause DATE-OBS to be set like 2013-08-18T16:60:01.0, reported by N. Hurley-Walker

Optimization: ~ Significantly increased speed of reordering when using interval range (-interval or
-intervalsout).

Some work on a minimal-noise deconvolution technique.

Textfix: Some extra detail in -circularbeam help

André Offringa

WSClean Version 1.7

Released 2015-03-10

Summary: Deconvolution can be performed with a compressed sensing method (MORESANE) and clean masks are
now supported. Also, determining the restoring beam size by fitting the psf is now the default; previously this was only
done when -fitbeam was specified.

Besides new features, version 1.7 has a long list of bugfixes so I recommend everyone to update.

Full list of changes:

MORESANE Compressed sensing deconvolution using J. Kenyon’s python MoreSane implementation.
Cleaning now supports cleanmasks, either with a casa file (-casamask) or a fits file (- fitsmask).
Fitting a Gaussian to the PSF is now the default for determining the restoring beam size.

Added convenience parameter -intervalsout to make fits snapshot movies.

Added option -no-update-model-required to skip writing the model column when possible, which speeds
up -mgain<1 runs that include reordering.

Added option -saveweights to store the gridded weights as fits file.

Bugfix: Samples which were gridded at v=0 were slightly downweighted in uniform/briggs weighting due to
one-off bug in (inverse-symmetric) weighting grid. This could manifest itself in a PSF which was slightly less
aesthetically pleasing, although in most cases it is hardly noticeable (especially in cleaned images).

Bugfix: In multi-scale mode, there was half a pixel offset in restored structures.

Bugfix: Rare time-rounding error, causing incorrect DATE-OBS value in output fits files. Reported by D. Kaplan.

1.2. Change logs 23

WSClean, Release git

* Bugfix: Bug causing infinite continuing cleaning in joined channel cleaning when ending on negative component.

* Bugfix: Image weight keyword is incorrectly converted to int, leading to possible MFS images with NaN values.
Reported by R. van Weeren.

* Bugfix: WSClean used REFERENCE_DIR instead of PHASE_DIR for image centre, giving incorrect coordi-
nates when NDPPP was used for phase shifting (SF #30). Reported by R. van Weeren.

* Bugfix: Crashes when cleaning near the horizon, caused by incorrect bounding box calculation during restoring
(SF #33). Reported by S. Bourke.

e Bugfix: When specifying multiple measurement sets with different bands, frequency keyword now represents
central frequency.

* Bugfix: Fixing FITS keyword bug; WSClean used to write ‘Hz’ in CUNIT4 (the ‘Stokes’ dimension). Reported
by M. Iacobelli.

e Textual: Help on -beamsize parameter said default unit is arcmin, but since 2.5 it is actually in arcsec (when
not specifying a unit). Reported by M. lacobelli.

These bugs were fixed after internal releases:
» Bugfix: Fixing bug in masked cleaning causing spurious components.

* Bugfix: Honour cleaning border when using masks and in single pol mode (SF #32).

WSClean Version 1.6

Released 2015-01-23

Summary: This version has a few changes that are especially useful for reducing LOFAR data: it supports correcting the
LOFAR beam during prediction, and the speed of major iterations on typical LOFAR measurement sets was increased.

When compiling version 1.6, cmake will now search for the LOFAR StationResponse library. If not found, the
-dft-with-beam option will not work.

Full list of changes:

¢ Feature: It is now possible to do the prediction with a DFT, option -dft-prediction. This is very slow, but
allows correcting for a beam.

* Feature: LOFAR beam can be computed, option -dft-with-beam.
 Performance fix: Normal prediction during major iterations is now buffered, which leads to ~3x faster prediction.
* Bugfix: Predicting with option -predict crashes (reported by N. Hurley-Walker).

* Bugfix: Joined-frequency cleaning with one polarization did not clean negative components.

WSClean Version 1.5

Released 2014-12-16

Summary: The PSF can now be fitted with an elliptical Gaussian, it is now possible to use “-scale lasec” as well as set
a uv-cut in lambda on top of in meters and several bugs were fixed.

Full list of changes:

¢ Beam fitting: option -fitbeam (/ -nofitbeam) enables fitting an elliptical Gaussian to the PSF, and restoring
is subsequently also performed with this elliptical PSF. This is not yet the default. (SF #17)

* New options -circularbeam and -ellipticalbeam to control beam fitting.

* New option -beamshape to set major/minor/position angle for elliptical beam shape.

24 Chapter 1. Getting started

WSClean, Release git

Option -beamsize now takes arcseconds by default. It sets a manual circular beam, and understands units (e.g.
-beamsize 2arcmin).

Wide-band mode can now also be enabled for single-polarisation imaging (SF #11).

The -scale parameter now accepts units, e.g. “-scale larcmin” (SF #21).

New option -tempdir for specifying alternative temporary directory for reordered files (SF #25).

No longer save gridding correction image by default, only save when new option -savegridding is given.
New option -minuv-1 and -maxuv-1, which set the maximum uv values that are still gridded.

Options -minuvw and -maxuvw are renamed to -minuvw-m and -maxuvw-m to distinguish from above new
options.

Bug fix: WSClean keywords were missing in MFS images (SF #20). Reported by N. Hurley-Walker.

Bug fix: parameters -multiscale-threshold-bias and -multiscale-scale-bias didn’t have effect in some multiscale
modi.

Bug fix: Crash “Table column WEIGHT_SPECTRUM is unknown” when no weight column present. Reported
by S. Makhathini (SF #22).

Bug fix: -interval parameter didn’t work correctly when using reordering. Reported by A. Rowlinson.

Bug fix: DATE-OBS keyword in fits output should reflect -interval setting. Reported by A. Rowlinson (SF #23).

WSClean Version 1.4

Released 2014-10-06

This version is one of the smallest updates as of yet, but does have some important bug fixes. The small inversion is
now on by default, there was something wrong with the stored XY dirty images in some cases (the ‘image’ restored
images were not affected) which was fixed, and a big memory leak was fixed.

Full list of changes:

Small inversion optimalisation is now on by default (SF #18)

New option -nosmallinversion to disable the small inversion

Bugfix: Fixing Briggs’ MFS weighting in multi-channel mode, refactoring ImageWeights (SF #12)
Bugfix: Corrected writing of residual dirty XY image and no longer write the dirty YX-i (SF #9).

Bugfix: Don’t crash when one of the fits keys is NaN or infinite (SF #10). This fixes a crash when creating a psf
with an empty data selection.

Bugfix: Report an error when trying to predict from an image with NaNs or other non-finite values
Bugfix: Removing two memory leaks, one of which might cause some major leakage

Some refactoring of the weighting calculations.

1.2. Change logs 25

WSClean, Release git

WSClean Version 1.3

Released 2014-08-05

In this version, it is now possible to select the new & supposedly fast multi-scale algorithm I've been working on. It
works well without tweaking on some MWA data of Vela & Puppis A, but other telescopes / sets might require tweaking
of the parameters (with -multiscale-threshold-bias and -multiscale-scale-bias). For those using Cotton-
Schwab cleaning that includes XY/YX polarizations, I urge upgrading to this version for some of the bug fixes.

Changes:

Feature: multi-scale cleaning can now be selected by using wsclean -multiscale. This is a new, supposedly
fast algorithm for multi-scale cleaning and has shown good initial results. It’s still somewhat experimental, and
might require tweaking the threshold bias and scale bias parameters (see the help).

Feature: wsclean -version will now report version info

Bugfix: Fixing big bug in prediction for XY and YX — sign error in imaginary image values before prediction,
on baselines with w>=0. This could potentially cause noisier/incorrectly deconvolved XY/YX images.

Bugfix: Fixing writing of wrong imaginary residual image — the actual saved image in XYi-residual was the real
value of XY

Bugfix: Throw exception when cleaning XY/YX polarizations without joined pol

Bugfix: Fixing help on -joinpolarizations and -pol

Bugfix: Fixing copy constructor of fitsreader — causing segfault on complex image prediction
Bugfix: Fixing error in -predict mode with XY/YX polarizations

Bugfix: Fixing issue with -predict: wouldn’t use Kaiser-Bessel gridding by default

Bugfix: Fixing problem in -predict with uninitialized reader causing possibly undefined behaviour
Bugfix: Making sure that uvw samples outside the field of view do not force more w-layers
Bugfix: Fixing possible crash when imaging beyond horizon

Bugfix: Extra safety check on input parameters in WSInversion

WSClean Version 1.2 and 1.2.1

Released 2014-05-29

This version fixes one major bug (cleaning didn’t always work, SF #6) and adds support for dual-polarization cleaning.

Changes:

New feature: Joined cleaning of two polarizations; previous version could only joinedly clean 4 polarizations.
Particularly useful for cleaning XX,YY. Enabled by e.g. -joinpolarizations -pol xx,yy.

New feature: Prediction-only mode (option -predict).
New feature: Added -j option to limit nr of cores used.
New feature: Added option -cleanborder to prevent cleaning of border, now defaults to 5%.

Major bug fix: Fixing issue with restored images in single pol mode not being restored from residual properly
(SF #6).

Bug fix: Intel compiler didn’t like certain C++11 features.

Bug fix: Only one psf is saved in multi-channel mode (reported by A. Neben).

26

Chapter 1. Getting started

WSClean, Release git

Bug fix: when using natural weighting and when imaging below the synthesized beam resolution, uv-samples
would wrap around in the uv field, causing imaging artefacts (reported by A. Neben).

Bug fix: Fixing imaging of sets with multiple spectral windows.

Bug fix: Malfunctioning MFS weighting mode with continuous reader.

Bug fix: Cleaning of images with only zeros does not end.

Bug fix: Issue with FindPeak, causing incorrect indices and not proper cleaning in certain modi.
Textual: Improved help message and some other output.

New (disabled) feature: A fast, new multi-scale clean algorithm is implemented, but it is not compiled in at the
moment pending further testing.

Version 1.2.1, released one day after 1.2, fixes a missing “uvector_03.h” error that made older (non-C++11) com-
pilers fail.

André Offringa

WSClean Version 1.1

Released 2014-04-23

This version introduces new features including a wideband deconvolution method, and fixes quite a few bugs.

Changes:

New dependency: GSL and CBLAS are now required to build WSClean.

New feature: Cleaning channels joinedly with cmdline parameter: -joinchannels. This performs peak finding
in the sum over all output channels, but subtracts components independently from the channels.

New feature: Option to grid weights once for all output channels (-mfsweighting).
New feature: When spectral imaging (with -channelsout), a weighted MFS image will be created.

New feature: Direct imaging of Stokes IQUYV, and possibility to clean joinedly over these too (requested by O.
Smirnov, SF #2).

New feature: Support imaging specific polarizations (rr/ Q / ..) in measurement sets with circular polarizations.
New feature: Specify absolute memory limit instead of relative limit (-absmem), requested by M. Bell.
New feature: Implemented options -minuvw and -maxuvw to set range of baselines to be gridded.

Syntax change: explicit option for performing joined-polarization cleaning (- joinpolarizations), no longer
the default.

Change: When imaging >= 4 polarizations, reorder by default.

Bugfix: Fixing some valgrind errors and a possible segmentation fault.

Bugfix: ‘make install’ does not work (reported by G. Molenaar, SF #1).

Bugfix: With spectral imaging, the uvw are not correctly divided by lambda, leading to incorrectly scaled images.
Bugfix: Problem with -smallinversion and used memory.

Bugfix: PartitionedMS handler does not handle an invalid WEIGHT_SPECTRUM column (reported by 1. Hey-
wood).

Bugfix: When reordering an MS, end with writing reordered model data back to measurement set, so that self-cal
etc is still possible when using Cotton-Schwab cleaning.

Bugfix: -interval parameter does not work properly.

1.2. Change logs 27

WSClean, Release git

* Bugfix: Documentation for -pol parameter is out-dated (reported by O. Smirnov, SF #3).
* Bugfix: Remove temporary image files

André Offringa

WSClean Version 1.0

Released 2014-03-15
This is the first public WSClean version. The features currently supported:
¢ Fast wide-field imaging
* Hogbom cleaning & Cotton-Schwab cleaning
« Joined-polarization cleaning (peak finding in zz? + zy? + yz2 + yy?)
* W-snapshot imaging
* Most common weighting modes (uniform, Briggs’, natural, super and sub-pixel weighting)
* Adjustable antialising kernel
» All important operations are multi-threaded

A paper has been submitted that shows WSClean’s accuracy is at least equal to the w-projection imaging in CASA, and
sometimes even better, with a considerable faster imaging time when large w-values are involved.

André Offringa

WSClean version 1 was in development from 2014 to 2016. Stable releases:
» Changelog for WSClean 1.12 (2016-07-09)
e Changelog for WSClean 1.11 (2016-03-11)
* Changelog for WSClean 1.10 (2015-12-12)
e Changelog for WSClean 1.9 (2015-08-21)
e Changelog for WSClean 1.8 (2015-05-21)
e Changelog for WSClean 1.7 (2015-03-10)
* Changelog for WSClean 1.6 (2015-01-23)
e Changelog for WSClean 1.5 (2014-12-16)
e Changelog for WSClean 1.4 (2014-10-06)
* Changelog for WSClean 1.3 (2014-08-05)
* Changelog for WSClean 1.2 (2014-05-29)
* Changelog for WSClean 1.1 (2014-04-23)
* Changelog for WSClean 1.0 (2014-03-15)

28 Chapter 1. Getting started

WSClean, Release git

1.3 Installation instructions

1.3.1 Getting the source code

Unless you need specific new features, it is recommended to use a stable (tagged) version of WSClean. These can be
downloaded from https://gitlab.com/aroffringa/wsclean/-/releases.

To retrieve the (experimental) master branch of WSClean, use git:

git clone -b master git@gitlab.com:aroffringa/wsclean.git

This will retrieve the master branch of WSClean.

1.3.2 Manual compilation

After downloading the source code, one will need to compile WSClean. WSClean requires:

 Casacore, for opening measurement sets. Version >=2.0 is required, not lower. Casacore is required even if you
already have Casa installed. Casacore needs to be compiled with C++11 support, which is the default for the
latest version.

FFTW version 3.3.5 or newer, used to perform Fourier transformations.
* Boost, used for threading, date and time calculations and some other general functionalities.

CFITSIO, for reading and writing FITS files.

* GSL, the GNU Scientific Library, used for certain computations.
WSClean uses C++11 features. Because of this, building WSClean with GCC requires at least GCC version 4.8.1.

To use the image-domain gridder (afast GPU gridder), you will need to install the IDG libraries from https://gitlab.com/
astron-idg/idg. To apply primary beams, the EveryBeam package is required from https://git.astron.nl/RD/EveryBeam.
To use the distributed mode, OpenMPI is required.

After installing these dependencies, compile WSClean with the following commands:

mkdir -p build
cd build

cmake ../

make -j 4

sudo make install

If cmake reports errors, you might have to install or specify your libraries in the call to cmake if they are not in standard
directories, e.g.:

cmake ../ -DCMAKE_PREFIX_ PATH=/opt/cep/casacore/

to add that directory to the search path. To add multiple directories to the search path, put the paths between double
quotes and separate them with a semicolon:

cmake ../ -DCMAKE_PREFIX_PATH="/path/to/casacore;/path/to/cfitsio"

1.3. Installation instructions 29

https://gitlab.com/aroffringa/wsclean/-/releases
https://github.com/casacore/casacore
http://www.fftw.org/
http://www.boost.org/
http://heasarc.nasa.gov/fitsio/
https://www.gnu.org/software/gsl/
https://gitlab.com/astron-idg/idg
https://gitlab.com/astron-idg/idg
https://git.astron.nl/RD/EveryBeam
https://www.open-mpi.org/

WSClean, Release git

1.3.3 Installed files

After succesfully running make install, the following programs will be installed:

wsclean
The main executable

wsclean-mp
The main executable for distributed runs

chgcentre
A program to change the phase centre of measurement sets, see chgcentre.

1.3.4 On Ubuntu and Debian

Binary packages are available on Ubuntu and Debian, and can be installed with sudo apt-get install wsclean.
In case that version is new enough for your purpose, you’re all done. If you want to compile WSClean from source, the
following packages need to be installed:

apt-get install \
casacore-dev libgsl-dev libhdf5-dev \
libfftw3-dev libboost-dev \
libboost-date-time-dev libboost-filesystem-dev \
libboost-program-options-dev libboost-system-dev \
libcfitsio-dev cmake g++

The LOFAR beam and IDG libraries are optional, but need to be installed manually from source if they are required
(see elsewhere on this page).

1.3.5 On Red Hat

The following document lists some instructions that can be helpful for instaling WSClean on Red Hat and CentOS:
Installing WSClean on Red Hat and CentOS.

1.3.6 Linking errors

If you get undefined reference errors in casacore-code when you compile WSClean, e.g. similar to “undefined refer-
ence to casa: :ArrayColumn<float>: :get(unsigned int) const”, it probably means that you did not compile
Casacore with C++11 support. When you compile Casacore, you need to turn this on explicitly:

anoko@leopard:~/casacore/build$ cmake ../ -DCXX11="ON"

after which cmake should respond with a list of enabled features, including:

-- C++11 support = ON

Whether it is necessary to switch on C++11 depends on the version of the compiler — with newer compilers it is turned
on by default.

30 Chapter 1. Getting started

WSClean, Release git

1.3.7 Compiling platform independently / portability

By default, cmake will create a binary that is optimized for the machine that it is compiled on, and will only work
on machines that contain the same instruction set as the compiling machine. In other words, the same binary might
not work on other machines, because it might use advanced instructions such as AVX instructions that might not be
available on another machine. It has been reported that this can e.g. lead to an “Illegal instruction” error (see [ticket
50](tickets:#50)).

If you want to make a binary that can be used on different platforms, you can add -DPORTABLE=True to cmake:

cmake ../ -DPORTABLE=True

You should note that this makes the binary in general slower, so you should not use it unless you have to.

1.3.8 Using the LOFAR/MWA/... beam

The latest versions of WSClean require the EveryBeam package to apply the LOFAR beam and other known beams
(VLA, MWA, LWA, ATCA, ...). Older versions used the LOFAR beam from the LOFAR repository or (since version
2.6) the “LOFARBeam” package from Github instead.

To have these primary beams available in WSClean, CMake needs to find the EveryBeam installation on your computer.
If you have installed EveryBeam in a custom directory, you can add it to your search path. For example, if EveryBeam
been installed to ~/Software/EveryBeam-install, this cmake command will use it:

cmake ../ -DCMAKE_PREFIX PATH="~/Software/EveryBeam-install/"

CMake will tell whether the LOFAR tree was found:

cmake ../ -DCMAKE_PREFIX PATH="~/Software/EveryBeam-install/"
[..]

EveryBeam beam library found.

Extra paths can be added to e.g. also include IDG. Paths can be separated with a ; (semicolon).

1.3.9 The MWA beam

The MWA beam requires that a . h5 file with beam coefficients is present in your path, which you can find in the MWA
software tools. This file needs to be in your Python search path. WSClean will iterate over your Python search paths
by executing the following Python program:

from __future__ import print_function
import sys
for a in sys.path:

print(a)

1.3. Installation instructions 31

https://git.astron.nl/RD/EveryBeam
https://github.com/lofar-astron/LOFARBeam

WSClean, Release git

Installation of WSClean on Red Hat-based systems

This chapter contains some instructions for Red Hat based systems.

CentOS 8

The source repository contains a Docker file scripts/docker/Centos8. This is a script to build a Docker container based
on CentOS 8. These same steps can be used as a reference when building the latest WSClean on a (non-virtual) CentOS
system. Other Red Hat systems should be very similar.

WSClean 2.7 on Red Hat 7.6

The text below was written by Leonardo Saavedra from NRAO.

Note: Be aware that these instructions are not for the latest WSClean version.

Some WSClean dependencies are provided by RHEL 7.6, but you have to install the latest fftw and casacore.
* http://www.fftw.org/
* https://sourceforge.net/p/wsclean

* https://github.com/casacore/casacore

Download the packages

mkdir ~/wsclean

cd wsclean

wget -c http://www.fftw.org/fftw-3.3.8.tar.gz

wget -c https://github.com/casacore/casacore/archive/v3.1.1.tar.gz

wget -c https://sourceforge.net/projects/wsclean/files/wsclean-2.7/wsclean-2.7.tar.bz2

Note: Be aware that these instructions refer to the old SourceForge version of WSClean. It is highly recommended to
use newer versions from GitLab.

For this example I am going to install under /export/local

Install fftw

cd ~/wsclean

tar xzvf fftw-3.3.8.tar.gz

cd fftw-3.3.8/

./configure --prefix=/export/local --enable-threads --enable-openmp --enable-shared
make

make install

32 Chapter 1. Getting started

https://gitlab.com/aroffringa/wsclean/-/blob/master/scripts/docker/Centos8
http://www.fftw.org/
https://sourceforge.net/p/wsclean
https://github.com/casacore/casacore

WSClean, Release git

Install Casacore

export LD_LIBRARY PATH=/export/local/lib:$LD_LIBRARY_ PATH
cd ~/wsclean

tar xzvf v3.1l.1l.tar.gz

cd casacore-3.1.1/

mkdir build

cd build

cmake ../ -DCMAKE_PREFIX_ PATH=/export/local/

make -j "nproc’

vim cmake_install.cmake <-- modified CMAKE_INSTALL_PREFIX
make install

Install WSClean 2.7

cd ~/wsclean

tar xvfj wsclean-2.7.tar.bz2

cd wsclean-2.7/

mkdir build

cd build/

cmake ../ -DCMAKE_PREFIX_PATH=/export/local/

make -j ‘nproc’

vim cmake_install.cmake <-- modified CMAKE_INSTALL_PREFIX
make install

Check WSClean

pwd
/export/local/bin
./wsclean -version

WSClean version 2.7.0 (2019-04-19)
This software package is released under the GPL version 3.
Author: André Offringa (offringa@gmail.com).

1.4 General usage

WSClean is a command line program. The “wsclean” executable accepts many parameters. The “wsclean” program
can be run without parameters to get a list of allowed parameters together with a short description. The general syntax
of wsclean is as follows:

wsclean [-options] <obsl.ms> [<obs2.ms> ..]

Here’s an example of a typical run for an MWA observation:

Make a Stokes I image of size 3072 x 3072 with 0.7' pixels,
do 10000 iterations, use CS cleaning and stop when the peak

(continues on next page)

1.4. General usage 33

WSClean, Release git

(continued from previous page)

flux has reached 3 level.
wsclean -size 3072 3072 -scale 0.7amin -niter 10000 \
-mgain 0.8 -auto-threshold 3 obs.ms

This performs a Cotton-Schwab clean. The Cotton-Schwab algorithm is enabled with the “-mgain 0.8 parameter,
which means that the peak flux is reduced by 80% until a new major iteration is started. Multiple measurement sets
can be specified on the command line to image the integration of those observations.

For fast imaging with less accuracy, you can perform a Hogbom clean and disable padding:

Similar to above statement, but now only Hégbom cleaning

and no padding

wsclean -size 3072 3072 -scale 0.7amin -niter 10000 \
-auto-threshold 3 -padding 1 obs.ms

Because the ‘mgain’ parameter was left out, WSClean will not iteratively go back to the visibilities. This also implies
that the MODEL_DATA column will not be filled (see self-calibration with WSClean) for more info).

A description of the basic cleaning parameters is given in the basic cleaning chapter.
1.4.1 Multiple measurement sets

When specifying multiple measurement sets on the command line, WSClean images the combined data from all mea-
surement sets together. For example,

wsclean -size 1024 1024 -scale lasec \
-niter 1000000 -mgain 0.8 \
-multiscale -auto-threshold 1 -auto-mask 5 \
lofar-100mhz.ms vla-1-band.ms vla-c-band.ms

will make deconvolved images from the combination of the 3 specified measurement sets.

The measurement sets may be observations at different frequencies, at different times and/or from different instruments.
They are required to have the same phase centre though. To image measurement sets with different phase centres, the
measurement sets should be phase rotated to the same direction before imaging. If the measurement sets have different
pointings and it is desirable to correct for the primary beam, it is possible to combine pointings by gridding with the
beam.

When splitting the data into so-called output channels or when selecting a subset of channels using the
-channel-range option, the full combined bandwidth (over all measurement sets) is split / divided. See the making
image cubes and wideband deconvolution chapters for more information. This is different from selecting sub-intervals
using -interval or -intervals-out, for which timestep indices are determined from the first measurement set only,
and the resulting timestep index selection is then applied to all the measurement sets. More information about time
selections can be found in the snapshot imaging chapter.

34 Chapter 1. Getting started

WSClean, Release git

1.4.2 An advanced MWA example

As a more enhanced example, here is a command to clean MWA GLEAM data:

wsclean -name obs-1068210256 \
-size 4000 4000 -niter 1000000 -mgain 0.95 \
-weight briggs -1.0 -scale 0.75amin \
-auto-threshold 1 -auto-mask 5 -multiscale \
-channels-out 4 -join-channels \
-pol xx,yy -join-polarizations \
1068210256.ms

The explanation of this command:

* Briggs’ weighting with robustness of -1 is used. For the MWA, this decreases the noise in single snapshots
slightly. See image weighting for more info on supported weightings.

e The (instrumental) XX and YY polarizations are imaged separately and cleaned together. This allows more
accurate primary beam correction for the MWA. See polarimetric deconvolution for more info.

* A high mgain value is used because the MWA synthesized beam is well behaved.

* A larger image is made because GLEAM includes lower frequencies, at which the primary beam is larger.

For GLEAM, the W-snapshot algorithm is used by executing the chgcentre command prior to imaging, as
described on the w-snapshot algorithm.

Next chapter: Basic cleaning

1.5 Basic cleaning

1.5.1 Image dimensions

The image size is set in pixels with the -size parameter, which takes a width and a height. An image is not required
to be square shaped. It is however required to use even numbers for width and height. The -scale parameter takes an
angle and sets the angular size of a single pixel. The pixel scale currently has to be square shaped. Together, the -size
and -scale parameters set the angular size of the image.

1.5.2 Threshold and maximum number of iterations

The basic required parameters for cleaning are threshold and niter. Threshold defines where to stop cleaning:
WSClean will continue cleaning until the peak residual flux is below the given threshold. It is given in Jy. The niter
parameter sets the maximum number of minor iterations that are allowed to be used.

It is good practice to make sure cleaning has reached the threshold, and only use niter to make sure wsclean will not
run for an excessively long time. One should also not clean deeper than the noise, unless a mask is used. A typical
stopping criterium is 3 x stddev, where stddev is the standard deviation of the noise in the image. The easiest way of
setting a stopping criterium based on the noise, is by using an automatic threshold. This is discussed next.

1.5. Basic cleaning 35

https://www.mwatelescope.org/gleam

WSClean, Release git

1.5.3 Automatic threshold

To set the deconvolution threshold, one would need to know the level of the noise before running the clean. For
automated processing, this is undesirable. Therefore, WSClean can automatically set a threshold based on the residual
noise level. The option for this is ~auto-threshold. With this option, WSClean will calculate the standard deviation
of the residual image before the start of every major deconvolution iteration, and clean up to the given factor times the
found noise standard deviation. The standard deviation is calculated using the medium absolute deviation, which is a
robust estimator that is not very sensitive to source structure still present in the image. When performing wideband
and/or polarized deconvolution, the RMS is measured from the integrated image. An example:

Clean to a 3 sigma noise level
wsclean -auto-threshold 3 -size 2048 2048 -scale lamin \
-mgain 0.8 -niter 50000 observation.ms

Note that the -mgain parameter is used, in order to enable the Cotton-Schwab style major iterations. While this is
not necessary for the automatic threshold to work, if the image has a very high dynamic range, the initially computed
standard deviation might not be a good estimate. By using Cotton-Schwab, the standard deviation is recalculated at the
beginning of every major iteration, and this will be more accurate. The -mgain parameter is discussed in more detail
in the next section.

One can also specify both an automatic threshold and a manual threshold. In this case, whenever one of the thresholds
is reached, the cleaning stops.

1.5.4 Using Cotton-Schwab: the -mgain parameter

The -mgain parameter sets the major iteration gain: during every major iteration, the peak is reduced by the given
factor. With an mgain of 0.8, the peak is reduced by 80%. This is quite a common and safe option for cleaning. With
a reasonable good PSF, using 0.9 is possible without loss of accuracy, and a bit faster. With a very bad PSF, it might
be necessary to lower the mgain parameter.

When -mgain is not given, or when it is set to 1, WSClean will never go back to the visibilities. It will therefore perform
a simple image-based Hogbom clean. While this is fast, it limits the accuracy of the image and the dynamic range that
can be reached. WSClean will also not write to the MODEL column, as would be required for self-calibration (see the
chapter on self-calibration). To use Hogbom clean and still fill the model column, an mgain of e.g. 0.9999 can be used.
Alternatively, the final model can be predicted in a second WSClean run.

Note that the -mgain parameter is not the same as the -gain parameter. The latter sets the minor loop cleaning gain,
and is 0.1 by default. It is almost never required to change the gain parameter.

Next chapter: Prediction

1.6 Prediction

WSClean can be used to fill the MODEL_DATA column with the visibilities corresponding to an image. This is called
‘predicting’ visibilities (CASA’s corresponding task is ‘ft’ — sometimes this is referred to as ‘degridding’).

Predicting can be performed by adding ‘-predict’ to the command line. For this to work, the input image needs to be
in the exact same projection as that WSClean would output it. If your image is in a different projection, you will have
to regrid it first.

An example prediction run:

Predict visibilities from a Stokes I image
wsclean -predict -name my-image obs.ms

36 Chapter 1. Getting started

WSClean, Release git

Be aware that the specified name (here ‘-name my-image’) still specifies the prefix of the file names in the same
way as that it is normally used for imaging. That means that in this run, prediction will look for an image called ‘my-
image-model.fits’. If you predict for multiple polarizations, e.g. with “-pol xx,xy,yx,yy”, the files should be named
accordingly, so the XX name is “my-image-XX-model. fits”, etc. The same applies when predicting with multiple
frequency intervals with ‘-channels-out’.

Note: For predicts that include a beam while gridding (facet-based or using IDG), the beam-corrected model image
is read. These images have a ‘-pb.fits’ suffix, e.g. ‘my-image-model-pb.fits’.

The normal use-case for using prediction is for self-calibration or subtraction. For these cases one should use a “model”
image, which contains the clean components. If the input image is in absolute flux, it might be necessary to first apply
the beam to the model image.

Prediction is supported since WSClean version 1.2. Since WSClean 2.1, it is no longer necessary to manually specify
the image dimensions and pixel size. It is still allowed though, in which case the specified dimensions are checked
against the image dimensions.

1.6.1 Frequency information during prediction

Some care should be taken when predicting at a different frequency than the model image or when predicting from
image cubes made with WSClean (described in making image cubes), because this works slightly different than CASA.
At this point, WSClean does not look at the frequency of the FITS file, and therefore won’t interpolate or extrapolate
the model to the right frequency. For example, if an image is made with

wsclean [...] ms-at-100MHz.ms

and the generated model is then predicted with

wsclean -predict [...] ms-at-200MHz.ms

the model is not extrapolated to the right frequency, so one will end up with the flux levels of the 100 MHz model.

WSClean will also not look at the frequency of the FITS files when you make use of the wide-band modes and create
multiple model images. E.g. when you image with:

wsclean -channels-out 4 [...] ms-at-100MHz.ms ms-at-110MHz.ms ms-at-120MHz.ms ms-at-
—130MHz .ms

and predict those four models into only one MS with:

wsclean -channels-out 4 -predict [...] ms-at-100MHz.ms

this will split the channels in the 100MHz MS into four groups and predict the four channel images into these groups.
So one will get different results in this MS compared to what one would get with:

wsclean -channels-out 4 -predict [...] ms-at-100MHz.ms ms-at-110MHz.ms ms-at-120MHz.ms,,
—ms-at-130MHz.ms

Which will split the full available bandwidth into four groups and thus predict the first channel image into the first MS
and so on.

1.6. Prediction 37

WSClean, Release git

1.6.2 Some MWA specifics

Applying the beam to an MWA image is a bit tricky, because the feeds are not orthogonal for anything but zenith. You
can use the ‘pbcorrect’ tool (in my MWA repository) to apply a beam to an image. The basic syntax is:

pbcorrect -uncorrect <image-prefix> <image-postfix> <beam-prefix> <stokes-prefix>

The input are absolute Stokes images and the output are apparent flux images with linear polarizations. The
-uncorrect parameter specifies it should do the opposite of its normal operation, as it would normally make Stokes
images out of wsclean’s output. For example, if the <stokes-prefix> is “stokes”, then pbcorrect will look for
stokes-L.fits, stokes-Q.fits, stokes-U.fits and stokes-V.fits. If any of these is not present, it will be assumed zero (and a
warning is issued). The ‘beam’ files are 8 files containing all real/imaginary components for the four linear polariza-
tions. These can be created with the ‘beam’ tool in my MWA repository.

If you use pbcorrect to prepare an image for wsclean prediction, you should set <image-postfix> to “model.fits”,
and the image prefix is the same prefix you will specify to wsclean.

Next chapter: WSClean and self-cal

1.7 Self-calibration

WSClean can be used to perform self-cal. There are two main approaches, supporting a range of scenarios:

¢ Use WSClean to fill the MODEL_DATA with predicted visibilities from an imaging run. When using -mgain with
a value less than 1, WSClean will fill the column. This column can then be used during calibration (e.g. with
DP3). The advantage of this is that it is relatively fast and easy.

* Make WSClean output a source component list (see Component lists) and use this list during the calibration (DP3
supports this format). The advantage of this approach is that it is easier to apply the beam (and other effects) on
a source list, it is very accurate, and it is possible to prune/edit the source list. A disadvantage can be that if the
number of sources is very large, calibration will be very slow.

1.7.1 Image-based self-calibration

One scenario where image-based self-cal can be useful is when combined with the ability to do (almost-)full-sky
imaging, since in some situations MWA’s field of view (for example) might require including highly off-axis sources
in the calibration model.

To perform self-cal, you need to use major iterations, as these will fill/update the MODEL_DATA column. When using
Casa’s tasks for calibration, the calibration tasks will use the MODEL_DATA and calibrate the CORRECTED_DATA using
this column. Other calibration utilities, like MWA’s mitchcal or LOFAR’s DP3 can similarly be instructed to calibrate
using the MODEL_DATA column.

Filling the MODEL_DATA requires a setting of mgain < 1, e.g. an mgain of 0.9. As long as mgain is not 1, WSClean will
end with a major iteration, and the MODEL_DATA column will be set to the “best” model from the cleaning model.

38 Chapter 1. Getting started

WSClean, Release git

1.7.2 Self-calibration from existing image

The ‘-predict’ option can be used to fill the MODEL_DATA column with a prediction from a pre-existing image (see
prediction). After having predicted model visibilities, these visibilities can be used to calibrate the data (e.g. with
DP3).

1.7.3 Polarized imaging & calibration

You can self-cal on Stokes I or on multiple polarizations, where the latter is more accurate (at least in the case of the
MWA), but takes more time. If you run WSClean on the desired polarizations one by one, e.g. on XX and then on
YY, or joinedly clean them, the MODEL_DATA column will have all imaged polarizations correctly filled in. The first
run will create the MODEL_DATA column, set all values to zero and then fill the XX column, the second run will notice
the MODEL_DATA already exists, and only update the YY column. B. McKinley has used this method and did a few
self-cal loops to create very deep and well-calibrated Fornax A images. You can run all polarizations at once with -pol
XX,XY,¥X,Vy, -pol iquv,or -pol rr,rl,1r,11. Forinfo on polarimetric deconvolution settings, see polarimetry
deconvolution.

1.7.4 CASA on-the-fly mode

Certain CASA commands (e.g. ft) will put keywords in a measurement set that turn on the “on-the-fly” (otf) mode. In
OTF mode, CASA will ignore the MODEL_DATA column and use other keywords to determine the model data. To make
use of the MODEL_DATA afterwards, you can use the delmod CASA command to disable OTF mode:

delmod(vis="myobs.ms’,otf=True,scr=False)
WSClean will never use or change OTF keywords in the measurement set.

Next chapter: Image weighting

1.7. Self-calibration 39

https://www.astron.nl/citt/DP3/

WSClean, Release git

40 Chapter 1. Getting started

CHAPTER
TWO

WEIGHTING

Contents:

2.1 Image weighting

WSClean supports uniform, natural and Briggs” weighting. These work exactly like in Casa and other imagers, and are
further described below.

2.1.1 Uniform weighting

Uniform weighting will give each scale the same weight. If multiple visibilities fall in one uv cell, they are down-
weighted by the number of visibilities in that cell. In this weighting mode, the image will have the highest resolution,
but the system noise will not be optimal. This gridmode is the default, but can be explicitly selected with -weight
uniform.

2.1.2 Natural weighting

In natural weighting, the visibilities are not weighted before gridding, causing scales that have more baselines to dom-
inate the image. Arrays have more small baselines, which will mean that large scales will be more dominantly present.
This mode will make sure that the system noise has the least effect in the image, but resolution and sidelobe noise are
worse. This mode is activated with option -weight natural.

2.1.3 Briggs’ weighting

Briggs’ weighting is a compromise between uniform and natural weighting. A parameter, called the robustness pa-
rameter, selects the desired level between uniform and natural. Typical values are between -1 and 1. Lower values
give more uniform-like weights, higher values give more natural-like weights. Note that values of -1 / 1 do not equal
uniform / natural weighting. Briggs weighting mode is selected with -weight briggs <robustness>, for example
-weight briggs 0.5.

41

WSClean, Release git

2.1.4 Super-uniform and super-Briggs weighting

In some cases, slightly better results can be obtained by using super weighting. Super weighting refers to performing
the counting of visibilities on larger grid cells, such that neighbouring uv-samples share their weight. This can be
selected with -super-weight <value>. The value represents how much larger the weight-counting cell should be.
CASA’s super uniform weighting mode is equivalent to -super-weight 3 -weight uniform. Additionally, it is
also possible to perform sub-uniform or sub-Briggs weighting, by giving a value less than one. The super-weighting
can also be used in combination with Briggs’ weighting. Super-weighting was implemented because many astronomers
are familiar with the “super uniform” weighting option in CASA. In many cases, the weighting rank filter described
below is a better option.

Super-pixel weighting can be nice on very large (full-sky) images, since the immense uv resolution might otherwise
start to make your beam become natural-ish weighted. Dan Briggs’ thesis describes sub/super-pixel weighting very
well.

2.1.5 Weighting rank filter

The weighting rank filter works in combination with one of the other weighting modes, and suppresses visibilities
that would receive a much larger weight than its uv-neighbouring visibilities. This is basically done by smoothing the
weights — see the weight rank filter page for a detailed description. In uniform weighting, some visibilities can receive
order of magnitudes more weight, causing these visibilities to dominate the image noise. By smoothing the weights,
this issue is mitigated. The weighting rank filter does the smoothing in such a way that the PSF is not visibly affected.

2.1.6 Relation to visibility weights

In WSClean, image weighting normally works ‘on top of’ the visibility weights stored in the measurement set (the
WEIGHT_SPECTRUM column). This in particular means that uniform weighting will weight all scales (baselines) the
same independent of their visibility weight. One therefore cannot increase the weight on long baselines by using
uniform weighting and increasing the visibility weights of those baselines. The visibility weights nevertheless still
have a function: they determine the weight in their particular uv-cell with respect to other visibilities in that same
uv-cell. All in all, this means that WSClean assumes that the visibility weights specify the inverse variance weight
of the visibility. Up or downweighting of scales has to be done by the image weighting (which can include rapering).
I’ve had reports that this behaviour is not consistent with how CASA treats the combination of visibility weights and
imaging weights.

This behaviour can be altered by using the -use-weights-as-taper option. When specified, imaging weights will
be determined without taking the visibility weights into account. Uniform weighting, for example, will make the
visibilities have uniform weights based on the visibility count per uv-cell, without accounting for the visibility weights.
The visibility weights are applied afterwards. This mode allows the visibility weights to be used to increase/decrease
the weights of certain scales, just like an image taper.

An example: consider three visibilities, A, B and C. Visibilities A and B fall into the same uv-cell, and visibility C falls
in a different UV cell. Assume the visibility weights of A, B and C are given by 1, 10 and 100. With normal uniform
weighting, this implies that:

* Visibilities A and B are added together with weights, giving visibility B 10x more weight than visibility A.

* Visibility C is in a different cell, and since there are no other visibilities in this cell, its weight of 100 is irrelevant.
In the image, the uv-cell of A and B receives the same weight as the uv-cell of C, as this is what uniform imaging
weights implies.

Even though visibility C has a 10x higher weight than B, it will not be upweighted in the final image. Now, if
-use-weights-as-taper would be specified:

* Again, visibilities A and B are added together with weights, giving visibility B 10x more weight than visibility
A.

42 Chapter 2. Weighting

http://www.aoc.nrao.edu/dissertations/dbriggs/

WSClean, Release git

* The UV cell of A and B receives a weight of 11, whereas the UV cell of C receives a weight of 100.

2.1.7 Other weighting-related settings
* MF weighting — If the bandwidth is split in multiple subbands for imaging (e.g. with -channels-out), it is
good to know about MF weighting.
* tapers — can be used to further shape the synthesized beam.
o The weight rank filter —used to decrease noise by avoiding giving too much weight to a single visibility.

» Continuing a deconvolution — can be used to deconvolve a model with one weighting setting, and image the final
result with different weighting settings.

Next chapter: Tapering

2.2 Tapering

Tapering can be used to shape the synthesized beam, by tapering off the weight of visibilities in the uv plane. This page
lists the tapering options supported by WSClean.

Tapering works cumulatively with weights set by the imaging weights (uniform, Briggs, natural, see the image weighting
chapter) and the visibility weight. Tapering is available in WSClean since version 1.10.

2.2.1 Gaussian taper

A Gaussian taper multiplies the uv-weights with a Gaussian function, which therefore makes the synthesized beam
approach a Gaussian function. A Gaussian taper is selected with -faper-gaussian <beamsize>. The beamsize is by
default in arcseconds, but can be given with different units, e.g. ‘“2amin”. A Gaussian taper in uv space will be
calculated such that the FWHM of the Gaussian in real space has the given beam size.

2.2.2 Tukey taper

Tukey tapers can be used to smooth edges with a Tukey window, also known as a tapered cosine window.
WSClean allows tapering three edges:

* -taper-tukey, a circular taper that smooths the outer edge set by -maxuv-1
e -taper-inner-tukey, a circular taper that smooths the inner edge set by -minuv-1

* -taper-edge-tukey, a square-shaped taper that smooths the edges as set by the uv grid and
-taper-edge.

The following plot shows how the Tukey-taper parameters influence the weights:

Next chapter: MF image weighting

2.2. Tapering 43

WSClean, Release git

2.3 Multi-frequency weighting

WSClean has a special weighting mode called ‘MF weighting’, which is turned on with the ‘-mf-weighting’ or
‘-join-channels’ parameter. This is a weighting mode that changes the way in which spectral imaging (i.e., making
image cubes) is performed. MF weighting is therefore only relevant when using a ‘-channels-out’ parameter larger
than 1. This parameter is explained on the manual page Making image cubes page.

MF weighting improves the frequency-integrated (multi-frequency, “MF”) images. If the individual (non-integrated)
spectral images are to be used for science, MF weighting is discouraged. This is because MF weighting adjusts the
weight of individual frequencies to make the integrated image look best. This however can create artificial spectral
structures when the individual frequency images are inspected / used in science. It is fine to use - join-channels for
those science cases, but make sure MF weighting is turned off with -no-mf-weighting.

If MF weighting is turned on, the weights of all imaged channels will be gridded on one grid. When turned off, the
weights of each imaged channel are gridded on a separate grid.

Turning MF weighting on can be useful, for example, to get uniformly weighted image cubes with the MWA. When
not using MF weighting, a single MWA channel creates such a fine track in uv space, that different tracks almost never
share the same uv pixel, and hence all the weights tend to be closer to ‘1’ in non-MF, but uniform, weighting mode. The
effect is that each image is weighted more towards natural weighting compared to MFS imaging. In this case, when all
images are summed later on, the integrated image does not look like a uniform image, because each channel has been
weighted separately.

So, this is resolved by using MF weighting. In MF weighting, all weights are gridded on the same grid, and hence the
sum of the image cube equals a MF image with the same weighting.

Note that MF weighting is off by default, but using the ‘-join-channels’ automatically enables MFS weighting.

Example of using MF weighting to make a briggs -1 image cube:

wsclean -channels-out 768 -mf-weighting -weight briggs -1 myobservation.ms

A related option is the weight rank filter that is enabled with the ‘-weighting-rank-filter’ option. The weight
rank filter prevents outlier weights that might increase the noise of the image.

Next chapter: Weight rank filter

2.4 Weight rank filter

The weight rank filter can be used to decrease noise by avoiding giving too much weight to a single visibility.

To determine the image weights, the weights are gridded on a regular grid. With uniform or Briggs” weighting, the total
weight of a visibility is determined by the number of visibilities that fall into that cell: the fewer visibilities fall into the
same cell, the more weight this visilibity receives. Because the visibilities form a track in uv-space, it can happen that
a particular visibility is the only visibility gridded in a particular uv-cell, while other uv-cells have on average hundred,
thousands, ... of visibilities in them. This implies that this single visibility will receive a lot of weight.

The weight rank filter in WSClean avoids this by calculating a local weight RMS of the grid, and truncating all weights
that are some factor above the local RMS. This effectively decreases the weight of those visibilities that would re-
ceive excessive weight otherwise. This results in very little change in the PSF, but can effect the noise in the image
significantly.

44 Chapter 2. Weighting

WSClean, Release git

2.4.1 Effect & improvement

The exact effect of this option changes very much on the type of observation, image size and uv-coverage. I’ve seen
improvements of 20-30% reduction in noise in certain VLA observations, while I hardly saw any improvement in
certain LOFAR and MWA observation.

To observe the effect of this filter, it can be useful to save the uv-weights with -save-weights, and perform an imaging
run with and without the filter.

2.4.2 Syntax

The parameter to enable the weight rank filter is -weighting-rank-filter, which takes the factor relative to the
RMS above which the values are truncated. For example:

wsclean -weighting-rank-filter 3 [other options] observation.ms

The default size over which the RMS is calculated, is 16 uv-pixels. During this calculation, only uv-cells with coverage
are used in the calculation. If the visibility coverage is very sparse, the size of 16 uv-pixels might be too small. It can
be changed with the -weighting-rank-filter-size option, for example:

wsclean -weighting-rank-filter 3 -weighting-rank-filter-size 64 \
[other options] observation.ms

Since WSClean 2.2, the default in WSClean is to apply a weighting rank filter with a value of 3. It is recommended to
always apply a weak rank filter, because it improves the noise with hardly any change on the PSF. In case there are no
visibilities with excessive weight, this filter will do nothing.

The weight rank filter is available since WSClean 1.8. In versions before WSClean 2.2, the default setting was to not
apply a weight rank filter, and since 2.2 it was turned on with a value of 3. As far as I'm aware, there’s no weight rank
filter option in CASA.

2.4.3 Related topics

» Image weighting, which discusses natural, uniform and Briggs’ weighting, super-uniform weighting, etc.

2.4. Weight rank filter 45

WSClean, Release git

46 Chapter 2. Weighting

CHAPTER
THREE

IMAGING MODES

3.1 Making image cubes

WSClean allows making image cubes, but it works slightly different compared to CASA. The following section de-
scribes how it works in WSClean.

To make image cubes with WSClean, the ‘-channels-out’ parameter is used. This parameter specifies the number
of different frequencies for which information will be present in the output.

Assume we have a measurement set ‘myobservation.ms’ with 100 channels. To image each channel seperately, ‘-
channels-out 100’ is added to the command line, for example:

wsclean -scale lamin -size 3072 3072 -niter 1000 -threshold 1 \
-channels-out 100 myobservation.ms

This will output 100 images, named wsclean-0000-image.fits, wsclean-0001-image.fits, ..., wsclean-0099-image.fits
(and similarly for the PSF, residual and dirty). Additionally, images named like wsclean-MFS-image.fits will be out-
putted, which are the weighted sum over all 100 images.

WSClean does not output these images in a normal “imaging cube” like CASA does, i.e., a single fits file with several
images in it. For now I've decided not to implement this (one of the reasons for this is that information about the
synthesized beam is not properly stored in a multi-frequency fits file). One has of course the option to combine the
output manually, e.g. with a simple Python script.

When you are interested in only a partial range of channels, the ‘-channel-range’ parameter can be used to select
that range. For example:

wsclean -scale lamin -size 3072 3072 -niter 1000 -threshold 1 \
-channel-range 60 70 -channels-out 10 myobservation.ms

This would image channels 60 to 70 and output separate images for each channel.

The channelsout parameter can be smaller than the available number of input channels. For example, a measurement
set with 100 channels can be imaged with “-channels-out 27, which will divide the bandwidth in 2 and output 2
images. Furthermore, you can also specify multiple measurement sets at different frequencies. In such a case, the total
bandwidth will be divided into the requested number of channels. For example:

Example:

wsclean -channels-out 3 -niter 10000 -mgain 0.8 -threshold 0.01 \
band-100-MHz.ms band-110-MHz.ms band-145-MHz.ms \
band-155-MHz band-190-MHz.ms band-200-MHz

This will output images at 105 MHz, 150 MHz and 195 MHz.

47

WSClean, Release git

Some more notes:

* The ‘-channels-out’ parameter can be used in combination with ‘-join-channels’ to improve the deconvo-
lution of MFS imaging in wideband scenarios, or to get better SNR during the deconvolution of spectral imaging.
This is explained on the Wideband deconvolution page.

* WSClean normally weights each output channel separately. This is equivalent to how other imagers do this. How-
ever, this is not always desired, especially not with modern correlators with large number of channels. Therefore,
a special weighting mode called ‘MF weighting’ has been implemented in WSClean to improve weighting of
spectral cubes. This is further explained on the MF weighting page.

3.2 Snapshot imaging

WSClean accepts a convenience parameter to make it easy to separate a measurement set in small snapshots and image
each one separately. The parameter to do this is:

-intervals-out <count>

This tells WSClean to split the measurement set in the given number of intervals, and image each interval separately.
The file name of all the image products of an interval will have the interval number preceded by a ‘t’. For example:

wsclean -intervals-out 100 -scale lasec -mgain 0.8 -threshold 1 \
-niter 10000 -name cyga MyCygASet.ms

This will output images cyga-t0000-dirty.fits, cyga-t0000-image. fits, and all the other products for t0000,
and so for t0001...t0099.

To image only part of the full time span, the -interval parameter can be used to select the range of timesteps that is to
be imaged. So, with “~intervals-out 100 -interval 200 3007, the first image will be made from timestep 200,
the next one from timestep 201 and further until timestep 299. Units are in “number of timesteps” (so the integration
time).

Note that the selection of timesteps with -interval is done before splitting into snapshots: if a measurement set has
10 timesteps, specifying -intervals-out 10 -interval 2 4 is invalid, as it would first select the interval from
timestep 2 to 4, and then split those 2 timesteps into 10 intervals. This is independent of the order in which these
parameters are given: it does not matter whether -interval or -intervals-out is first on the command line.

You can use all other cleaning parameters together with -intervals-out (-mgain, -auto-threshold, -niter...
etc.).

3.3 w-snapshot algorithm

WSClean provides an algorithm that has approximately the same performance as the W-snapshot algorithm suggested
by Cornwell et al. (2012), although the algorithm in WSClean is slightly different. In WSClean, it consists of phase
rotating the visibilities to zenith, and then recentring the image during w-stacking. Mathematical details are explained
in the WSClean paper. It seems to be worthwhile for MWA snapshots of a few minutes with images of 3072 x 3072
pixels at zenith angles > 20 degree, and provides a speed-up of about a factor of 3 at zenith angles > 45 degrees. For
larger images the speed-up will be greater. It is not useful for long integrations.

To use this method, the measurement set should be phase rotated to the phase centre that you want to image (as it
normally would be). This chapter assumes this is 08h20m@0.0s -42d45m00s (which is Puppis A). To prepare for the
w-snapshotting approach, first run the chgcentre tool with the following parameters:

48 Chapter 3. Imaging modes

https://arxiv.org/abs/1207.5861
http://arxiv.org/abs/1407.1943

WSClean, Release git

chgcentre -minw copy.ms

This will calculate the optimal projection direction and perform the required phase rotations. Finally, during imaging
the phases should be shifted to the original target, e.g.:

wsclean -shift 08h20m00.0s -42d45m00s ...

The chgcentre command rotates the coordinate system whereas WSClean’s -shift parameter shifts the coordinate
system along the tangent plane. The result is that imaging is done in a different projection that is still centered on the
target location, but that has smaller w-terms. The chgcentre page provides further information about the chgcentre
tool.

The -shift parameter is new in WSClean 3.0. Before 3.0, this could be achieved by using the -shiftback option of
chgcentre. That approach is no longer supported in WSClean.

The idg, w-gridding gridder and w-stacking gridders all support this approach. Support for the w-gridding gridder was
added in WSClean 3.0.

3.4 chgcentre

The ‘chgcentre’ tool can be used to change the phase centre of a measurement set. It will recalculate the uvw-values
(from the antenna locations, phase centre and time) and phase-rotate the visibilities. We found that the casa task ‘fixvis’
has a bug (as of March 2014) that causes it to malfunction for some arrays (e.g. MWA, LOFAR).

Since wsclean 2.10, chgcentre is compiled and installed when wsclean is installed. See the general installation instruc-
tion for help.

Execute chgcentre without parameters to get help on the syntax:

A program to change the phase centre of a measurement set.
Written by André Offringa (offringa@gmail.com).

Syntax: chgcentre [options] <ms> <new ra> <new dec>

The format of RA can either be 00hOOmMOO.0s or 00:00:00.0
The format of Dec can either be 00d00mO0.0s or 00.00.00.0

Example to rotate to HydA:
chgcentre myset.ms 09h18m05.8s -12d0®5m44s

Some options:
-geozenith
Will calculate the RA,dec of zenith for each timestep, and moves there. This,
—make the set non-standard.
-flipuvwsign
Flips the UVW sign. Necessary for LOFAR, for unknown reasons.
-minw
Calculate the direction that gives the minimum w-values for the array.
-zenith
Shift to the average zenith value.
-only-uvw
Only update UVW values, do not apply the phase shift.
-shiftback

(continues on next page)

3.4. chgcentre 49

WSClean, Release git

(continued from previous page)

After changing the phase centre, project the visibilities back to the old phase.
—centre. This is useful

in WSClean for imaging with minimum w-values in a different projection.
-f

Force recalculation, even if destination is same as original phase direction.
-datacolumn <name>

Only phase-rotate the visibilities in the given column. Otherwise, the columns

DATA, MODEL_DATA and CORRECTED_DATA will all be processed if they exist.
-from-ms <ms>

Rotate the measurement set to the same direction as specified

in the provided measurement set.

When a measurement set contains multiple data columns (e.g., DATA, MODEL_DATA, CORRECTED_DATA), each column
will be updated (as long as they have a standard name).

If you do not provide a new RA and dec, chgcentre will give you some info about the measurement set:

$ chgcentre myobs.ms
A program to change the phase centre of a measurement set.
Written by André Offringa (offringa@gmail.com).

Current phase direction:

-00h59m31.7s -16d46m19s
Zenith is at:

-01h00mO0.8s -26d46m44s

(-01h00m49.0s -26d46m44s - -00h59ml12.7s -26d46m44ds)
Min-w direction is at:

-00h59m31.7s -26d46ml19s

You can specify ‘-zenith’ or ‘-minw’ as option to rephase to the local array zenith or the direction orthogonal to the
best-fit plane to the antennas. The latter is close to zenith, but provides slightly lower w-terms. This has not been tested
on telescopes other than the MWA. The syntax for this is:

$ chgcentre -minw myobs.ms

This can be used in combination with WSClean’s -shift parameter for w-snapshot imaging. In that case, the original
phase centre should be specified with the -shift parameter. The net effect is that the measurement set is phase rotated
to the sky direction with minimal w-terms, and shifted back along the tangent plane to the direction of interest.

In WSClean 3.0, this approach replaced the -shiftback option of chgcentre for shifting the visibilities along the
tangent plane. See the w-snapshot algorithm page for more info.

3.4.1 Legacy data with -shiftback applied

Before WSClean 3.0, it was possible to prepare w-snapshotting with the -shiftback option, e.g.:

$ chgcentre -minw -shiftback myobs.ms

A shifted measurement set uses wsclean-specific keywords. Support for this was removed in WSClean 3.0 (see the
changelog for details), and any observation for which these shifting keywords are detected will produce an error in
WSClean 3.0.

In case archival data to which -shiftback is applied needs to be imaged with WSClean 3.0, the option should be
undone. A shifted measurement set can be restored by phase rotating it to its original RA/dec: chgcentre will detect

50 Chapter 3. Imaging modes

WSClean, Release git

the keywords in the measurement set, undo the shift and update the keywords.

3.4.2 A LOFAR bug

For unknown reasons, the uvw value needs to be flipped for LOFAR sets. As far as I know, this is not necessary for
other telescopes, but LOFAR requires you to specify -flipuvwsign.

3.5 Baseline-dependent averaging

This page explains baseline-dependent averaging, a feature that can increase the performance of gridding. This feature
is available in WSClean since version 2.0.

Baseline-dependent averaging is a technique that allows more efficient averaging of data. In normal averaging, long
baseline are averaged at the same level as small baselines. However, since small baselines can be averaged much more,
this is inefficient. In baseline-dependent averaging, short baselines are averaged more than the long baselines.

By decreasing the number of visibilities, the imaging will become faster. By chosing the proper averaging factor, this
can be quite significant with negligible effects on the image quality. The total time it will save is dependent on many
factors ; the image size, the size of the w-terms, the number of visibilities, etc. If the gridding is the dominant cost,
then baseline-dependent averaging is probably a significant improvement. In cases where the image size is very large
and/or the w-terms are very large, it might be that the Fourier transforms are the dominant cost, instead of the gridding,
and the savings might be less.

In principle, the baseline-dependent averaging can be done both in time and in frequency. However, WSClean can only
do this in the time direction so far.

3.5.1 Baseline-dependent averaging in WSClean

WSClean can perform baseline-dependent time averaging during its “reordering” step. In this mode, it reads in a normal
measurement set and averages into an internal format. The baseline-dependent averaging happens thus all internally,
and other programs don’t handle the averaged data. There’s currently no good definition for how to store baseline-
averaged data in Measurement Sets, so one cannot e.g. perform a self-calibration loop that images the baseline-averaged
data, and then calibrate the baseline-averaged data.

3.5.2 Setting the averaging factor

Baseline-dependent average is enabled with the option “-baseline-averaging <nwavelengths>”, which takes a
parameter that is the number of wavelengths it is allowed to average over. This value can be related to the averaging
factor as follows:

nwavelengths = max baseline in nwavelengths * 2pi * integration time in seconds / (24*60*60)

E.g. if a baseline of 20 kLambda can be averaged to 12 seconds without decorrelation, a corresponding baseline-
dependent averaging factor can be calculated with:

20000 * 2pi * 12 / (24*60*60) = 17 wavelengths.

Using -baseline-averaging 17 would therefore average any baseline of 20 kLambda to 12 seconds. Smaller base-
line will be averaged more, and longer baselines will be averaged less.

Of course, the number of wavelengths to average over can also be calculated from first principles by determining how
much phase-change in one averaging cell is acceptable.

For LOFAR, we’ve seen speed ups of a factor of 4-8 and for MWA data likewise.

3.5. Baseline-dependent averaging 51

WSClean, Release git

3.5.3 Further options

Cleaning and major iterations etc. are all possible like normal.

Currently, option ‘-baseline-averaging’ requires option ‘-no-update-model-required’, because no un-
averager (extrapolating) method to write the model data back at full resolution is available. This means this option
can not be trivally used inside a self-cal loop where the model data is required. This can be overcome by perform-
ing the imaging with baseline averaging, and predicting the final model image back into the measurement set with a
separate WSClean run, that excludes baseline averaging.

This is a simple command to show the syntax of baseline-dependent averaging:

wsclean -size 1024 1024 -scale 5asec -mgain 0.8 \
-niter 10000 -threshold 0.002 \
-baseline-averaging 16 -no-update-model-required \
-maxuvw-m 100000 observation.ms

Note that baseline-dependent averaging currently only works together with primary-beam correction since version 2.5.

3.5.4 Baseline-dependent averaging in DP3
Since version 3.1 WSClean can read baseline-averaged data generated by DP3’s BDA Averager. WSClean will auto-
matically detect whether the data have been averaged by DP3. When using these data there are some restrictions.

* The data may only be averaged in the time direction.

* The following command line options are not supported:

— -baseline-averaging

-even-timesteps

-interval

-odd-timesteps

-simulate-baseline-noise

-simulate-noise

3.5.5 Some LOFAR specifics

If a measurement set includes the international baselines, it can be helpful to remove these by a row-selection maximum
uvw-m value. If one doesn’t do this, the reordered file can still be very large because the international baselines won’t
be averaged at all. The -maxuvw-m option works before reordering (whereas -maxuv-1 does not), and can thus remove
those. Hence, adding a maxuvw-m that is just smaller than the first international (or unused) baseline can improve the
speed. This even holds when those baselines are flagged.

Of course, even better is to explicitly remove the international stations from the measurement set when they are not
used, e.g. using DP3.

52 Chapter 3. Imaging modes

https://www.astron.nl/citt/DP3/steps/BDAAverager.html
https://www.astron.nl/citt/DP3

WSClean, Release git

3.6 Continuing a deconvolution

WSClean uses the option ‘-continue’ to continue a previous deconvolution run, and -reuse-psf and -reuse-dirty
to skip imaging of those two and directly clean existing images.

There are multiple scenarios why continuing can be useful, for example:

* To finish a previously unfinished deconvolution run when the initial deconvolution was prematurely stopped
because of the stopping criteria (not because of a crash).

 To use different imaging settings at different stages; e.g. clean up to 3 sigma, then construct a mask manually
and continue a deeper deconvolution with a mask. (note that auto-masking is often a better way to do this)

* If you want different image weighting settings with the same deconvolution. For example, one can run the
deconvolution with uniform weights, and then reimage the set with the same deconvolution results but with
different weighting.

There might be other use-cases for -continue. However, not that what -continue does is a bit complex, so you
should understand the specific steps that -continue performs to make effective use of it.

3.6.1 Syntax

The syntax to continue a run is to simply add ‘-continue’ to the command line:

First run:

wsclean -size 1024 1024 -scale lamin -niter 1000 \
-auto-threshold 10 -mgain 0.8 \
observations.ms

Continued run:

wsclean -continue -size 1024 1024 -scale lamin -niter 1000 \
-auto-threshold 3 -mgain 0.8 \
observations.ms

There are few considerations:

* The constructed model visibilities need to be stored in the measurement set. This implies that -mgain should
be used (see the Selfcal instructions for more info on mgain) in the first run, or you have to manually predict the
model image from the first run, before continuing. WSClean does not verify whether this assumption holds.

* As aresult, it is not directly possible to use -no-update-model-required in the first run, because the second
run requires the MODEL_DATA column to be filled. If -no-update-model-required was enabled, or only a
model image without the corresponding predicted visibilities is available, it is still possible to continue the run
by first predicting the model data (using wsclean -predict ...) from the model image before continuing.

¢ In a continued run, WSClean expects the model image to be there. It also expects it to have its normal name, i.e.
something like prefix-model.fits. For predicts that include a beam while gridding (facet-based or using IDG), the
beam-corrected model image is read, with a name such as prefix-model-pb.fits.

* One cannot change the image dimensions, phase center or pixel scale between the first and a continued run.

* The second run can not include more visibilities than the first run. E.g., if selection parameters such as -maxuv-1
are used, the first run should not be more restrictive than the second run, because the MODEL_DATA column would
not be set for those visibilities.

This option is available since WSClean version 2.0.

3.6. Continuing a deconvolution 53

WSClean, Release git

3.6.2 Example: change weighting

A common situation for using continued imaging is to image diffuse structure in the presence of point sources. In the
first run, the point sources are subtracted, while in the second run, the weighting is changed to focus on the diffuse
structure.

The following sequence of statements would do this:

Run with uniform weighting to subtract point sources:

wsclean -size 2048 2048 -scale lamin \
-niter 10000 -threshold 0.1 -mgain 0.8 \
-weight uniform \

-name diffuse-field observation.ms

Since the images will be overwritten in the second run,

here I copy the images so they can be inspected for
debugging purposes.

cp diffuse-field-model.fits uniform-diffuse-field-model.fits
cp diffuse-field-image.fits uniform-diffuse-sources-image.fits

H W% R

Finally, the run is continued with different weighting
settings to highlight the residual diffuse structure.
wsclean -size 2048 2048 -scale lamin \

-continue \

-weight natural -taper-gaussian 3amin \

-name diffuse-field observations.ms

See the chapter on weighting for more info on weighting.

3.6.3 What -continue really does

By adding -continue to the command line, WSClean will do the following things:
* The previous model image will be read.

* During the first inversion, WSClean will image the PSF (even thought it might already exist — since e.g. the
weights might have been changed).

* During the first inversion, WSClean will immediately image the residual data (data - model data). This image is
still named ‘dirty image’, even though it is actually the residual image of the first deconvolution.

* Any new components found during cleaning will be added to the previous model image.
* The previous model image will be overwritten.
* The final image will be restored with the full model.

The implication of this strategy, is that if you continue a first run with a second run with the same settings, both using
-niter N, the resulting restored and model images are the same as when you would have run the full deconvolution
with -niter 2N at once. However, during a continued run the PSF and residual image will be reimaged (to allow
changing the weighting), so using the two runs will be slower. The bottom line is that one should only use -continue
if there are good reasons for it.

54 Chapter 3. Imaging modes

WSClean, Release git

3.6.4 Difference with -subtract-model

The -subtract-model option only makes WSClean subtract the model column from the data column during the first
imaging iteration. The useful use-case for this is to make it directly image the residual without any extra cleaning.
Any previous sources won’t be restored. Also, if you enable cleaning something rather confusing happens: during the
first iteration, the “current” residual is imaged. This image is cleaned and a new model is formed with a few residual
sources. The models of the residual sources is written to the MODEL_DATA column, and in the next iteration, the
new MODEL_DATA is subtracted from the DATA, making all sources that were previously subtracted appear. The
bottom line is that this option should only be used to quickly reimage a residual image without extra cleaning. If you
do want cleaning, you have to manually subtract the MODEL_DATA from the DATA, which is easy e.g. with this Taql
statement:

taql update obs.ms set DATA=DATA-MODEL_DATA

3.6.5 Reusing PSF / dirty image

Existing PSF or dirty images can be reused to:

* run the deconvolution algorithms of wsclean without doing the inversion (i.e. without ever going back to
the visibilities)

* speed up a second run of imaging when the PSF/dirty already exist, and no change in imaging settings
(pixel scale, size, weighting, etc.) is made.

A first “regular” run to make the PSF and dirty image:

wsclean -make-psf -size 1024 1024 -scale 30asec -channels-out 4 \
obs.ms

A run that reuses the PSF and dirty images from the previous run:

wsclean -reuse-psf wsclean -reuse-dirty wsclean \
-no-reorder -name secondrun \
-size 1024 1024 -scale 30asec -channels-out 4 \
-niter 1000 -auto-threshold 5 obs.ms

The use of ‘-no-reorder’ skips the reordering of visibilities by wsclean, which is useful when wsclean would never
go back to the visibilities, as then the reordering is just overhead. It is allowed to keep the name between the runs the
same (so to remove ‘-name secondrun’ from the second run).

3.7 Distributed imaging

Multiple nodes can be used to speed up the imaging by running wsclean in distributed mode, which makes use of
MPI to parallelize the imaging over multiple nodes. To use this, you need a recent WSClean version that provides the
executable wsclean-mp.

A typical run:

mpirun --hostfile host_file -np 8 wsclean-mp -size 10000 10000 ...

And a host-file could look like this:

3.7. Distributed imaging 55

WSClean, Release git

nodel0®0 slots=1
nodell6 slots=1
nodell8 slots=1
nodell9 slots=1
nodel22 slots=1
nodel23 slots=1
nodel24 slots=1
nodel25 slots=1
nodel26 slots=1
nodel27 slots=1
nodel28 slots=1
nodel29 slots=1
nodel30 slots=1

The host file should specify one slot per host, otherwise multiple wsclean’s are executed on the same host, and that has
(normally) no benefit, and would actually make those processes compete for memory and cpu. If you use wsclean-mp,
all paths should be absolute for the hosts participating, and the paths should be reachable by all nodes (so -name should
specify an absolute path name, and the input files should have an absolute path name).

wsclean-mp will distribute the different channels to different nodes. This implies that if you don’t use -channels-out
there’s no benefit, whereas using -channels-out 8 with -np 8 gives you a speed-up of 8. If multiple output channels
are not necessary for your science goal, one can use -fit-spectral-pol 1 -deconvolution-channels 1.

3.8 Primary beam correction

WSClean can calculate and apply the primary beams of several instruments (LOFAR and MWA since version 2.7,
and later versions supported more). It uses the EveryBeam library for this. There are two ways to correct the beam:
during gridding (using IDG) and as an image plane correction. This page discusses image plane correction, whereas
beam correction during gridding is discussed on the following page: Gridding with the beam using IDG. Image plane
correction is faster and less complex, but will not correct for time variation of the primary beam, and won’t weight
the data optimally. Beam correction during gridding is therefore superior to image plane correction, but is not always
required to get good results.

Image-based primary beam correction is enabled with the option -apply-primary-beam. Primary beam correction
can either be applied on Stokes I or on the four Stokes polarizations. In Stokes I-only mode, it is assumed that the field
does not contain polarized flux (i.e., only a scalar correction is performed). For image-based correction, the beam’s
Jones matrix are summed as Mueller matrices. These are then inverted and applied:

corrected = B! vec(V)

Where B is the complex 4x4 Mueller matrix of the average beam, and V is the visibility matrix.

3.8.1 Supported telescopes

Primary beams are calculated using the EveryBeam library. This library, which was originally part of WSClean,
supports numerous telescopes. See the EveryBeam README for a list of supported instruments. The EveryBeam will
automatically determine what instrument is associated with the measurement set, and use the right beam (if available).

56 Chapter 3. Imaging modes

https://git.astron.nl/RD/EveryBeam/-/blob/master/README.md

WSClean, Release git

3.8.2 Beam sensitivity limit
By default, WSClean will clip the primary-beam-corrected image for which the response is smaller than 0.5%. This
can be modified with the -primary-beam-1limit parameter.

The reason for clearing pixels with low response is that the primary beam may have nulls or almost-nulls in them,
and because the image is divided by those value, they may cause numerical issues. The non-primary-beam-corrected
images will not be clipped, and can be inspected to analyze the full imaged area. The clipping can be turned off by
setting -primary-beam-limit ©.

3.8.3 LOFAR specifics
It is common in LOFAR observations to correct the visibilities for the beam at the phase-centre. WSClean can also

correct for this. This is referred to as “differential beam correction”, while the normal situation is referred to as “full
beam correction”. Using a differential beam leads to better polarization correction.

Full beam correction

An example to perform Stokes I imaging and full beam correction:

wsclean -apply-primary-beam -size 1024 1024 -scale 20asec \
observation.ms

WSClean outputs the normal uncorrected image (wsclean-image.fits), the 8 components of the beam Jones ma-
trix (wsclean-beam-XX.fits, wsclean-beam-XXi.fits, wsclean-beam-XY.fits, ...) and the primary beam
corrected image (wsclean-image-pb. fits). Note that the dirty, residual and model images are not corrected.

Example to make beam-corrected Stokes I, Q, U and V images:

wsclean \
-apply-primary-beam \
-pol iquv -size 1024 1024 -scale 20asec \
observation.ms

WSClean outputs the 4 normal uncorrected images, the 8 components of the beam Jones matrix and the 4 primary
beam images (which have pb in them).

Other combinations of polarizations, such as xx, yy or iq are currently not supported and will result in an error. If you
need other modes let me know.

The beam correction can also be applied together with multi-frequency output, joined channel mode and/or the snapshot
mode. Inthose cases, a pb image is saved for every output image. The channel-integrated “MFS” image is not corrected.

Beam correction works together with baseline-dependent averaging, but only since WSClean 2.5. Before that, WSClean
would crash or give incorrect results when combining primary beam correction with baseline-dependent averaging.

3.8. Primary beam correction 57

WSClean, Release git

Differential beam
To correct an image for the beam when the phase-centre beam has been applied to the visibilities, the option
‘-use-differential-lofar-beam’ can be added. ("-apply-primary-beam” also still needs to be given).

In summary: use “-apply-primary-beam” when no beam has been applied yet, and use “-apply-primary-beam
-use-differential-lofar-beam” to apply the differential beam.

The REFERENCE_DIR column is used for determining what phase centre the beam has been applied to. Mathematically,
WSClean then applies the differential beam Di as derived below. The data V being imaged have been premultiplied
with the central beam C for baseline ij, and we want to return a matrix that corrects the data for the full beam B. Given
our data R:

-1 —H
Vij = C; Ry G
we want to multiple data with a differential beam matrix D such that
-1 —H -1 —H
D;"Vi;D; ™ = B; "R;;B;
With B the full beam matrix. We can solve for D;:
Dl = Bt
D' = B;'C;
D, =C;'B;

(The same could be achieved by solving for the D; term in C; i Dj’H = BJ.’H).

3.8.4 MWA specifics

Version 2.7 and upwards can directly apply the MWA beam during imaging. This avoids having to separately image
XX and YY if only Stokes I is needed.

As for the other telescopes, the option to make this happen is -apply-primary-beam. WSClean will determine from
the telescope name stored in the measurement set that this is an MWA observation, and uses the MWA specific keywords
that describe the pointing (antenna delays) of the tiles.

Usage of the MWA beam requires having installed the HDFS file that is installed as part of the MWA repository, which
will be searched at runtime. See also https://github.com/MWATelescope/mwa_pb.

3.8.5 Time-varying beams

When using image plane beam correction, WSClean calculates the time-integrated beam by summing snapshot beams;
abeam is calculated for every 30 min and every output channel. Be aware that the beam correction is a single correction,
and is not time-dependent. Hence, if the beam changes over time, information might smear out over the polarizations.
This is less of an issue when the beam was taken out in the visibilities.

58 Chapter 3. Imaging modes

https://github.com/MWATelescope/mwa_pb

WSClean, Release git

3.8.6 Installation information

LOFAR beam correction is available since WSClean version 1.11, AARTFAAC beam correction since WSClean version
2.6. To use either beam, you need to have compiled WSClean with the EveryBeam library. CMake reports whether it
has found the library. If WSClean has been compiled without the library, and you ask to correct for the primary beam,
WSClean will report an error and stop.

3.9 Facet-based imaging

WSClean provides experimental support for facet-based imaging, and applying direction-dependent effects (DDEs)
per facet. A facet should be understood as a (polygonal shaped) subdomain of the full image, where both convex
and concave polygons are supported. A first advantage of facet-based imaging is that DDEs can be applied per facet.
Parallelization and reduction of the memory footprint can be other other advantages of facet-based imaging, because
visibility gridding and predicting can largely be done for each facet independently, rather than requiring the full image.

3.9.1 Availability

Facetting is available in WSClean version 3.0 and later.

3.9.2 Command-line options

To enable facet-based imaging in WSClean, a file containing the facet definitions should be provided via the
-facet-regions option on the command line:

-facet-regions <MY_REGIONS_FILE>

in which [MY_REGIONS_FILE] is a file containing the facet definitions in the DS9 region file format. For a detailed
explanation on the expected file format, see the explanation on DS9 region file.

Enabling the facet beam correction can be done with the option

-apply-facet-beam

The facet beam update interval (in seconds) can be defined by specifying:

-facet-beam-update <seconds>

The default value for the update interval is 120s.

Direction-dependent corrections per facet can also be read and applied from an H5Parm file - which in essence is a
HDFS5 file with some prescribed lay-out. This is done via the command-line option:

-apply-facet-solutions <path-to-h5parm> <namel[,name2]>

where <path-to-h5parm> is the path to the HSParm solution file and <namel[,name2]> is a comma-separated list
of strings specifying which “soltabs” from the provided H5Parm solution file are used. Acceptable names are amp1000
and/or phase000.

In case WSClean uses multiple measurement sets as input, either one H5Parm solution file or a distinct H5Parm solu-
tion file per seasurement set can be specified. The correction that should be applied (amp1000, phase®00, or both) is
assumed to be identical for all HSParm solution files. As an illustration, assume that N measurement sets are passed
to WSClean, with corresponding solution files h5parml.h5, h5parm2.h5, ..., h5parmN.hS5 containing a scalar

3.9. Facet-based imaging 59

WSClean, Release git

amplitude correction. The syntax for applying the facet solution files on its corresponding measurement set thus be-
comes:

-apply-facet-solutions h5parml.h5,h5parm2.h5, ... ,h5parmN.h5 ampl000

Note: To find the matching direction in the solution file for the specified facets, the (RA, Dec) pointing of each facet
is matched against the direction with the smallest (Euclidean) distance in the solution file. For further information on
the (RA, Dec) pointing of a facet, see DS9 region file.

3.9.3 Example command

An example facet-based imaging command in WSClean, applying both a facet-based beam correction as well as a gain
correction from an H5Parm file could be:

wsclean \
-apply-facet-solutions mock_soltab_2pol.h5 ampl®00,phase®00 \
-facet-regions ds9.reg \
-apply-facet-beam \
-facet-beam-update 120 \
-niter 1000000 -auto-threshold 5 -mgain 0.8 \
-size 1024 1024 -scale lamin \
ms

3.9.4 Caveats

Facet-based imaging is currently an experimental feature, and therefore should be used with care. A (probably non-
exhaustive) list of caveats is presented below:

* Parallel processing can be enabled with the -parallel-gridding option (multi-threaded) or the wsclean-mp
(using MPI). Parallelization over facets is however barely tested, and may return unexpected errors or results, in
particular when applying DDE:s.

* Facet-based imaging in conjunction with the Image Domain Gridder (IDG) is only possible without applying
DDE:s.

* When applying solutions in WSClean for facetted imaging, only scalar solutions are currently applicable.

60 Chapter 3. Imaging modes

CHAPTER
FOUR

GRIDDING MODES

4.1 Image domain gridding

The image-domain gridder (IDG) is a new, fast gridder that makes w-term correction and a-term correction computa-
tionally very cheap. It performs extremely well on gpus.

To use IDG, the IDG library needs to be available during compilation. WSClean 2.5 is compatible with IDG version
0.2. See installation for more information.

4.1.1 Considerations

IDG supports the same cleaning and data selections options that WSClean offers in normal mode (without IDG — so
e.g. Cotton-Schwab, multi-frequency multi-scale cleaning, auto-masking, etc.). However there are a few points which
require a bit of care to use IDG:

* Baseline-dependent averaging does not work together with IDG and should not be used together.

* Imaging multiple polarizations independently (without joining polarizations) is not possible with IDG, see the
discussion on polarization settings below.

* IDG can only be used on measurement sets that have four polarizations (e.g. XX/XY/YX/YY).

4.1.2 Command-line options

There are several IDG related WSClean parameters:

-use-idg

This option turns on the IDG gridder. If IDG is not available, WSClean will show an error.

-idg-mode [cpu/gpu/hybrid]

IDG mode to use. The default is CPU, which works on any computer. GPU and Hybrid both make use of the GPU
and require the availability of GPU libraries when compiling IDG (see the IDG manual). The “pure” GPU mode is
however not recommended to be used, as it does not have all the features that the hybrid mode has, hence hybrid is
the recommended method when GPUs are available.

61

https://gitlab.com/astron-idg/idg
https://gitlab.com/astron-idg/idg

WSClean, Release git

4.1.3 Gridding with the beam

IDG allows gridding with a time-variable beam — currently (as of 2.6), this includes the LOFAR, AARTFAAC and
MWA beam. This would increase the accuracy of with which sources are deconvolved (in theory, but it depends
of course on the accuracy of the beam model). The option to do this is -~grid-with-beam, and optionally, if the
differential beam needs to be applied (which is common; see the LOFAR beam page for more info) one would also add
-use-differential-lofar-beam.

In summary; IDG with full beam correction:

wsclean -use-idg -grid-with-beam ...

IDG with differential beam correction:

wsclean -use-idg -grid-with-beam -use-differential-lofar-beam ...

For more information about the differential lofar beam, see primary beam correction. Note that you do not have to add
-apply-primary-beam: if you don’t specify this parameter, WSClean will grid with the beam and output both the
“flat noise” image and the pb corrected image.

NB: In earlier versions, specifying both -apply-primary-beam and -use-idg would apply the wrong beam!

4.1.4 Polarization settings for IDG

IDG always images all Stokes parameters. Therefore, it makes sense to set the polarizations to iquv (with -pol iquv)
when using the IDG, as otherwise the other polarizations are imaged and then thrown away. IDG does however require
joined or linked polarization cleaning: it is not possible to clean the polarizations individually with IDG in a single
run. If this is really desired it can be done by running wsclean 4 times, imaging one polarization at a time, however
most science cases will want to use one of the other options described below.

There are several distinct cases of interest:
* Total intensity science, i.e., not interested in QUV: only image I with -pol I.

* Total intensity science, but “nice to have QUV” for e.g. sensivity analysis (V is useful for that): image all
polarizations with -pol IQUV and link the deconvolution on polarization I with -1ink-polarization i.

* Interested in rotation measure synthesis, not directly in I and V but nice to have: image all polarizations with
-pol IQUV and link the deconvolution on polarization Q and U with -1ink-polarization qu (possibly with
squared deconvolution etc., see [polarized cleaning page](PolarizedCleaning)).

e Interested in all stokes parameter, cleaning each polarization in a joined way: -pol IQUV
-join-polarizations.

Some further explanation on this: IDG in combination with -pol iquv -join-polarizations can be the best
choice in some cases, but if one is only interested in Stokes I, it has the downside that QUV are involved in the cleaning
of I, and in case these are mostly empty, the net effect is that the noise in the clean-component finding step is increased
slightly. Since [WSClean 2.6](Changelog-2.6) it is possible to “link” polarizations. Its use is explained on the [polarized
cleaning page](PolarizedCleaning). To overcome the downside described above, the recommended setting for imaging
with IDG is to use polarization linking on I, similar to:

wsclean -link-polarization i -use-idg [..]

This will clean Stokes I fully, and clean the components found in I also from the other polarizations. However, it will
not clean structure from QUYV that is not found in I.

62 Chapter 4. Gridding modes

WSClean, Release git

4.1.5 Performance

On my 4-core home machine, the CPU version is not as fast as the wstacking gridder. However, it can apply a-terms
and uses less memory, which can be advantageous in some cases. In contrast to the CPU gridder, the GPU gridder is
considerably faster (up to an order of magnitude), but only for large images (>6k or so).

The exact performance benefits depend heavily on image size, bandwidth and number of cores available. Hence if
performance is important, I recommend to make a careful comparison for the particular test case you are interested in.

IDG has been tested and shown to work on MWA data. It performs well, but does require a lot of memory, caused by
the wide field-of-view of the MWA and therefore high w-terms.

4.1.6 Advanced a-term corrections

WSClean+IDG allows a combination of several direction-dependent corrections to be applied, including TEC screens,
diagonal gain correction and position shifts (“dldm screens”). These are discussed on the [a-term correction
page](ATermCorrection).

4.1.7 Information for older IDG versions

Before WSClean version 2.9, IDG’s memory usage was highly dependant on the number of channels in the set. IDG
can be made to use considerably less memory by splitting the bandwidth using -channels-out and wide-band de-
convolution (see making image cube and wideband deconvolution). For example, splitting the bandwidth in 4 output
channels has allowed imaging one of the MWA sets on a 32 GB machine:

wsclean -grid-with-beam -beam-aterm-update 10 -channels-out 4 -join-channels -link-polarizations i -use-
idg -size 1536 1536 -scale 1amin -niter 1000000 -auto-threshold 0.5 -auto-mask 4 -multiscale -mgain 0.8
observation.ms

This should no longer be necessary for WSClean 2.9 and later. In those versions, IDG should honour the requested
memory settings and available memory. If you do expect memory issues, you can tweak the memory usage using the
-mem and -absmem parameters of WSClean.

4.2 A-Term correction

A-term correction is available in WSClean when gridding with the Image Domain Gridder (IDG). Info on how to enable
and effectively use IDG can be found on the /DG page.

4.2.1 Gridding with a-term screens

To use a-term correction or combine multiple corrections, a configuration file can be provided to WSClean to set up the
a-term corrections to be applied by IDG. The configuration file can be specified with -aterm-config <filename>,
and has a structure like this:

This is a test parset. Comments are made by starting a line with a hash symbol
The aterms option lists all the corrections that are made. For demonstration,
this parset makes all possible corrections:

aterms = [tec, dldm, diagonal, beam, paf]

A tec correction has parameters 'images' and 'window'
See the WSClean help for a description of the image format used.

(continues on next page)

4.2. A-Term correction 63

WSClean, Release git

(continued from previous page)

tec.images = [atermsl-tec.fits aterms2-tec.fits]

The window parameter is new since 2.7

It supports tukey, hann, raised_hann, rectangular or gaussian.

If not specified, raised_hann is used, which generally performs best.
tec.window = raised_hann

The dldm correction (source shift) has parameters 'images', 'window' and 'update_
—interval'

dldm.images = [atermsl-dldm.fits aterms2-dldm.fits]

How often (in seconds) to update the phases computed from the dl,dm values.
dldm.update_interval = 300

dldm.window = raised_hann

The diagonal correction has parameters 'images' and 'window'.
diagonal.images = [atermsl-diag.fits aterms2-diag.fits]
diagonal.window = raised_hann

The beam correction has parameter 'update_interval'. It may also have

telescope-specific options, e.g. the lofar beam supports 'differential', and
'usechannelfreq'.

beam.differential = true

beam.update_interval = 120

beam.usechannelfreq = true

beam. frequency_interpolation = true

The paf correction is an easy wrapper for multi-beaming arrays. In this mode, measured
beam gains are read from fits files. Each combination of antenna and beam is stored in
a separate fits file with total power (scalar) values, and each fits file can have

multiple frequencies to support having a different beam at different frequencies.

Each measurement set is assumed to contain the data for a single beam, and

the order of the fits files specified here should match the order of the measurement..
—set.

paf.antenna_map = [ant_0 ant_1 ant_2 ant_3 ant_4 ant_5 ant_6 ant_7 ant_8 ant_9 ant_10]
paf.beam_map = [00 01]

paf.beam_pointings = [-09h25m00.0s 55d49m59.0s -09h35m33.0s 54d47m29.0s]
paf.file_template = beammodels/$ANT/CygA_191120_$BEAM_$ANT_I.fits

paf.window = hann

The aterms keyword specifies a list of corrections to be applied, and each correction can have some parameters. The
TEC and diagonal images are FITS image cubes with a special format; see the chapter below on TEC correction. Those
parameters that are specified in the config file are no longer necessary on the command line (e.g. -grid-with-beamis
no longer effective when a config file is specified with beam). The tec and diagonal image lists can take one or multiple
fits files. The fits files are concatenated time-wise, so in an observation with 20 timesteps, the first one can specify the
first 10 and the second one the last 10. This allows timegaps; e.g. if two observations are imaged that have some gap
in time, different fits files can be made so that it is not required to “zero pad” the time in between.

The paf correction is described in the chapter on combining pointings. The other corrections are discussed below.

64 Chapter 4. Gridding modes

WSClean, Release git

4.2.2 Kernel size

When gridding with a-terms, it is important to set the -aterm-kernel-size parameter to an appropriate value. A-
term images are resampled onto a small grid, and they are made as smooth as necessary to fit within the specified aterm
kernel size. If your aterm screens (beam / ionospheric / ...) are smooth, the value can be low, but if they need to have
a higher resolution, some tuning might be required. In WSClean 2.10, the default size is 16 when specifying a aterm
config file. Otherwise / before WSClean 2.10, the default size is 5. A size of five is very small, but enough for the
LOFAR beam. It is probably too low for most TEC or gain correction screens. You can check the result of resampling
the aterms to the specified size with the -save-aterms option that is described elsewhere on this page.

4.2.3 TEC correction

IDG can apply a spatially varying time-variable TEC term that can additionally be different for different antennas and
output channels. To use this, the ~aterm-config option described above should be used to supply a tec image. The
provided TEC image should have 5 dimensions, ordered as follows:

* RA

* DEC

* Antenna
* Frequency
e Time

The number of antennas should either match with the imaged measurement set, or should have a dimension of one, in
which case the same aterm is used for all antennas. The time dimension is optional: when not specified, the same cor-
rections are applied to all times. The RA and DEC dimensions are interpolated on the IDG sub-grid via a combination
of low-pass filtering and nearest neighbour interpolation. This is typically around 64-256 pixels, so providing images
that are larger is not necessary. The frequency and time axes are also interpolated. The RA and DEC dimensions should
be in the standard radio imaging projection with appropriate CRPIX, CRVAL and CDELT settings. These parameters need
also to be appropriately set for the FREQ and TIME axis. The frequency axis has values in Hz. The time axis should
have AIPS/Casacore time values. These time are Modified Julian Dates (MJD), but in seconds, so they are MJD values
multiplied by 86400. For example, the 8th of May in 1982 would be represented as 3.8965e+09. The times in the FITS
file have the same meaning (and units) as values in the TIME column in the measurement set; so they represent the
time at the centre of the timestep. The screen is selected whose time is nearest to that of the value in the TIME column.

Since TEC values are interpolated over frequency with its 1/ relation, it is normally not required to have more than one
channel in the image, unless higher order terms need to be corrected. The correction is constant per output channel, so
the output channels have to be chosen such that they are fine enough to achieve the desired accuracy. The values in a
TEC file are applied as “delta TEC terms”, meaning that a value of zero implies no change to the gain of the antenna.
The phase of the gain (in radians) is evaluated as: phase = image[pixel] * -8.44797245e9 / frequency, with
frequency in Hz.

This is an example header of an aterm TEC fits file:

SIMPLE = T / file does conform to FITS standard
BITPIX = -32 / number of bits per data pixel

NAXIS = 5 / number of data axes

NAXIS1 = 1024 / length of RA axis

NAXIS2 = 1024 / length of DEC axis

NAXIS3 = 48 / length of ANTENNA axis

NAXIS4 = 1 / length of FREQ axis

NAXISS5 = 10 / length of TIME axis

EXTEND = T / FITS dataset may contain extensions

(continues on next page)

4.2. A-Term correction 65

WSClean, Release git

(continued from previous page)

[..]

CTYPE1 = 'RA---SIN' / Right ascension angle cosine
CRPIX1 = 513.

CRVAL1 = 123.4002825

CDELT1 = -0.0125

CUNIT1 = 'deg !

CTYPE2 = 'DEC--SIN' / Declination angle cosine
CRPIX2 = 513.

CRVAL2 = 48.2173836111111

CDELT2 = 0.0125

CUNIT2 = 'deg !

CTYPE3 = 'ANTENNA '

CRPIX3 = 1.

CRVAL3 = .

CTYPE4 = 'FREQ ! / Central frequency
CRPIX4 = 1.

CRVAL4 = 138475036.621094

CDELT4 = 183105.46875

CUNIT4 = 'Hz !

CTYPE5 = 'TIME !

CRPIX5 = 1.

CRVALS = 5020582991.9 / MID in seconds
CDELTS5 = 32.0 / 32 seconds per aterm

4.2.4 dldm gain correction

“Dl-dm” gain correction can apply a positionshift to correct the position of sources. This kind of correction works
almost the same as TEC correction. It also requires a FITS file with 5 dimensions:

RA, DEC, MATRIX, FREQ, TIME

Again, the TIME dimension is optional: when not specified, the same corrections are applied to all times. Like with
TEC correction, the dimensions need to be given in this exact order. The dimension MATRIX should have 2 elements:
one for the d1 values, and one for the dm values. The other dimensions are as described for TEC correction.

4.2.5 Diagonal gain correction

Diagonal gain correction can correct the visibilities with a diagonal Jones matrix. Therefore, diagonal correction
performs a correction with two complex values, one for XX and one for YY. Diagonal gain correction with IDG works
almost the same as TEC correction. Instead of a FITS file with 5 dimensions, diagonal correction requires a FITS file
with 6 dimensions:

RA, DEC, MATRIX, ANTENNA, FREQ, TIME

Like with TEC correction, the dimensions need to be given in this exact order. Compared to the TEC aterms file,
there’s one extra dimension: MATRIX. For diagonal gains, this matrix dimension has 4 elements: real XX, imaginary
XX, real YY and imaginary YY. The other dimensions have their same use. The frequency axis is used to find the
nearest image-frequency for each visibility (this works since version 2.8).

If you get images out with all NaNs, the gains might be all zero at some position. For TEC or dldm correction, this
obviously is not a problem (zero phase=no correction), but for diagonal gains, a zero matrix leads to division by zero
at some point. This can in particular happen because IDG pads the image — so if one makes TEC aterm images that are
exactly the size of the output image, they won’t cover the border.

66 Chapter 4. Gridding modes

WSClean, Release git

4.2.6 Analyzing / saving the a-terms

The -save-aterms can be useful for diagnostic output. It turns on saving of the TEC screen after resizing them to the
IDG subgrid size and low-pass filtering them to the kernel size (see the kernel size section for more info). The output
images are named “aterm-ev0.fits” and “aterm-realxx®.fits”, with increasing numbers for the different aterms
over time and counting further in subsequent cleaning iterations. Each image contains a mosaic of images, one image
per antenna, starting counting in the bottom left. The images with “ev” in their name are the eigen value of the Jones
matrix. These reflect e.g. the power of the beam when imaging with the beam. When imaging with only TEC aterm
values, the values are all one, because a TEC change is just a phase change, and the eigenvalue of such a matrix is one:
hence not very useful! The images with “realxx” in their names, are the real value of the first (“xx”") element of the
Jones matrix. These are more useful for assessing TEC aterm values.

4.3 Combining pointings

WSClean makes it possible to image and clean a combination of pointings and/or a drift-scan, also known as joint
deconvolution. It is advisable to use version 2.10 — older versions support some of the features, but in particular the
‘measurementset multi-field’ support was added only in 2.10.

What is discussed in this page, is to grid multiple pointings together on one grid, and applying the primary beam of
each observation separately. It also allows to combine observations with different antenna responses (e.g. LOFAR
international stations + LOFAR core stations; heterogenous VLBI arrays; interferometers with PAF like Apertif, etc.).
It is somewhat similar to mosaicking a number of pointings together with the beam in image space, except that it
additionally allows deconvolution on the full, combined image. This makes it possible to deconvolve images deeper.

4.3.1 Setting the phase centre

For an observation, the pointing centre can be different from the phase centre: the pointing centre is to what direction
the dish is pointed and affects the primary beam. The phase centre direction is the direction at which the phases are
zero, and is more or less a reference direction that affects what is actually imaged. To make it possible to combine
different pointings, all pointings should be set to have the same phase centre. This can be done using the chgcentre
tool that is shipped with wsclean. The phase centre of an observation can be set as follows:

chgcentre observation.ms 10h0®1m30s 02d26m00s

This implies your combined image will be centered on 10h01m30s 02d26m00s. If the observation contains multiple
fields, all fields will be set to have this phase centre. See chgcentre for more info.

4.3.2 Gridding with the beam

To combine observations weighted with the beam, each visibility should be gridded with the corresponding beam. This
is only possible with the IDG gridder, hence the IDG gridder has to be used (add -use-idg and optionally -idg-mode
hybrid to use GPUs: see image domain gridding).

WSClean needs to know the beam shape. A few arrays are supported ‘out of the box’, such as LOFAR, MWA and VLA.
In that case, simply adding -grid-with-beam is enough. Otherwise, a FITS file can be specified with the appropriate
beams; see a-term correction.

WSClean needs the beam to have a certain level of smoothness, which results in a certain support of the kernel. In case
the beam has unsmooth parts (e.g. near the horizon, or near the estimated response), the default settings might not be
enough. Option -aterm-kernel-size can be used to change the default. Most beams are quite smooth, and don’t
require a kernel larger than 5..16 pixels. Hence, a safe start is to use a size of 16 and tweak later on for performance.

4.3. Combining pointings 67

WSClean, Release git

It is possible to apply other direction-dependent corrections during the imaging. To do so, the list of a-terms needs to
be defined using a separate config file as explained on the a-term correction page. Such a config file can also specify
the beam gridding settings, which means that in that case the parameters like -grid-with-beam do not have to be set
on the command line.

4.3.3 PAF settings

WSClean has some specific features for joint convolution of multi-beam system, such as phased-array feeds (e.g. APER-
TIF or ASKAP). For such telescopes, it is often desirable to provide response images per beam, for which the individual
beam images have also been centred on the pointing direction of each beam. This is normally simpler than providing
response images that all have been gridded to the full field centre. What this implies is that each beam image only has
to capture the part of the beam with significant gain.

To perform such ‘paf” imaging, it is expected that the data for each beam is stored in a separate measurement set. Each
beam and/or antenna may provide a separate beam fits file. The fits file may also have a frequency axis. Additionally,
the beam can be corrected for the frequency of the visibilities.

This information can be provided by an a-term config file as described in the chapter a-term correction. Here is an
example:

aterms = [paf]

paf.antenna_map = [RTO RT1 RT2 RT3 RT4 RT5 RT6 RT7 RT8 RT9 RT10 RT11]
paf.beam_map = [00 01]

paf.beam_pointings = [-09h25m00.0s 55d49m59.0s -09h35m33.0s 54d47m29.0s]
paf.file_template = observation_cbeam-$ANT-$BEAM.fits

paf.window = raised-hann

paf.reference_frequency = 1355e6

To allow some flexibility, the filenames of the beams are specified with a file template. This template may use the
special variables $ANT and $BEAM, which will be replaced by values from the antenna_map and beam_map, respec-
tively. If $ANT and/or $BEAM is not used, the map still needs to be defined, but its values are not used. The beam_map
maps each measurement set to the beam string that can be used in the file_template. The antenna_map links the
antennas in the measurement set to an antenna string that can be used in the file_template. With the above exam-
ple, visibilities from the first measurement set that need to be corrected for antenna O are corrected by the fits file
observation_cbeam-RT0-00.fits.

The beam_pointings variable is required to hold the centres of the beam images (ra and dec values, separated by
spaces). The reference_frequency is used as the central “unit scale” frequency of the fits file: for higher frequencies,
the image size is shrunk by their ratios, and similarly stretched for lower frequencies. If this kind of frequency correction
is not desired, the reference_frequency can be set to O or left out.

4.3.4 Other image settings

» The image dimensions should be set such that all pointings are included. For example, if you have 2x2 pointings
that connect at the fwhm, and the fwhm corresponds to 1000 pixels, the phase centre should be set to the centre
of the 4 pointings and by making an image of 2000x2000, all pointings are included up to their fwhm.

e When using ‘multiple field’ observations, that have been phase centered to the same direction, option -field
all can be used to combine all fields, or a comma-separated numbered list can be specified if only a part of the
fields are to be imaged, e.g. -field 0, 1,2 . Note that these option are only supported when all fields have the
same phase center.

68 Chapter 4. Gridding modes

WSClean, Release git

* Start with a low value for -mgain, like 0.6, or even lower when cleaning diverges or the uv-coverage is not so well
to begin with. Cleaning a mosaick of pointings with different responses is not as stable as cleaning a homogenous
observation.

* Because it is likely that the images are going to be very big when combining pointings, it is probably advisable
to use the parallel deconvolution option.

* Because the noise probably changes over the image, it is likely useful to use the -1local-rms option. See the
local RMS cleaning page for more info.

Here is an example run:

wsclean \
-use-idg -grid-with-beam -aterm-kernel-size 16 -multiscale \
-field all \

-mem 10 -temp-dir ~ -name fullfield -weight briggs 0 \
-size 8192 8192 -scale 500masec \

-niter 1000000 -nmiter 10 -mgain 0.5 -auto-threshold 1 \
-auto-mask 5 -channels-out 4 -join-channels \

-local-rms -parallel-deconvolution 4000 \
vla-observations.ms

4.4 W-gridding

W-gridding is a wide-field gridding algorithm similar to W-stacking, but instead of assigning every visibility to its
nearest w-plane, it extends the concept of uv-gridding to the w-direction and therefore grids each visibility to a small
range of w-planes, weighted with a kernel function. The theoretical foundations of the algorithm are described in Ye,
Gull, Tan & Nikolic (2021); a technical description of the implementation is given in Arras, Reinecke, Westermann &
EnBlin (2020).

W-gridding is enabled by the command-line flag -use-wgridder, and its accuracy can be controlled via the parameter
-wgridder-accuracy, which is set to 1e-4 by default and can be varied in the range from le-2 (very coarse, but fast
gridding) down to 1e-6 (most accurate gridding achievable with single-precision floating point). This value specifies
the maximum acceptable rms error of the result when compared to a direct Fourier transform. The algorithm will select
appropriate parameters (like amount of padding, kernel shape and kernel support) automatically to reach the requested
accuracy in the least amount of time. Therefore, many parameters accepted by wsclean’s w-stacking gridder (e.g.
-padding, -nwlayers*, -grid-mode, -kernel-size and -oversampling and -parallel-gridding) will be
ignored in that mode.

The algorithm has a very small memory footprint: it only requires storage for a single complex w-plane, a copy of the
dirty image and some indexing data structures, which are typically much smaller than the visibility data.

Both gridding and degridding directions are available and support shared-memory parallelization that can be controlled
using the - j parameter.

The w-gridder is available since WSClean version 2.9, and was further improved in speed in versions 2.7/0 and 3.0.

4.4. W-gridding 69

https://arxiv.org/abs/2101.11172
https://arxiv.org/abs/2101.11172
https://arxiv.org/abs/2010.10122
https://arxiv.org/abs/2010.10122

WSClean, Release git

70 Chapter 4. Gridding modes

CHAPTER
FIVE

DECONVOLUTION MODES

5.1 Masks and auto-masking

Masks are often used to be able to clean up to/below the noise level. Deeper cleaning leaves fewer undeconvolved
residuals behind, hence the image quality is higher, and it decreases the self-cal bias when used inside a self-cal loop.

5.1.1 Providing a mask

WSClean accepts masks in CASA format and in FITS file format. A mask is a normal, single frequency, single polar-
ization image file, where all zero values are interpreted as being not masked, and all non-zero values are interpreted as
masked.

A basic example:

wsclean -fits-mask mymask.fits -niter 1000 -mgain 0.8 \
-size 1024 1024 -scale 10asec myobservation.ms

A model image can be used as a mask file. In standard clean (i.e., not multi-scale clean) this can be used to limit
the clean components to significant features. For example, one can first clean to 3 sigma (with the -auto-threshold
option), then use the model as fitsmask and clean to e.g. 0.3 sigma. This does require two runs though, which is not
necessary. Also, while this same method can be used for multi-scale cleaning, in general a multi-scale clean will make
large parts of the model image non-zero, and cleaning will therefore not be very well constrained. To overcome both
issues, WSClean implements a technique called auto-masking.

5.1.2 Auto-masking

Auto-masking allows automated deep cleaning and solves the two problems mentioned above:
* Only one run of wsclean is required;
¢ It maintains scale-dependent masks, which improves multi-scale cleaning.

Auto-masking works in all modes since WSClean 2.2. The general syntax is as follows:

wsclean -multiscale -auto-mask 3 -auto-threshold 0.3 \
-niter 1000000 -mgain 0.8 -size 8000 8000 -scale 2asec \
obs.ms

This will start multi-scale cleaning first towards a threshold of 3 sigma. During multi-scale cleaning, the positions and
scale of each component is recorded and put in a scale-dependent mask. Only the center pixel of the kernel is placed
in the mask. Once the 3 sigma level is reached, cleaning will continue towards the final threshold of 0.3 sigma. During
that stage, the scale-dependent masks are used to constrain the cleaning.

71

WSClean, Release git

A scale-dependent mask makes sure that when a certain scale-kernel size was cleaned, only that same scale is allowed
at that position when the mask is used.

The combination -auto-mask 3 -auto-threshold 0.3 seems like a good general setting, which normally leaves
almost no residuals behind.

In cases where the RMS varies strongly over the field of view, for example because of calibration artefacts, it might be
useful to use [local RMS thresholding](LocalRMSThresholding), instead of thresholding relative to the global RMS.

5.1.3 Combining auto-masking with a regular mask

Auto-masking works in combination with normal masking, so that WSClean can be forced to to find components only in
a certain area, and after reaching the auto-masking threshold it would continue with the automask. Since the automask
will only contain components within the fitsmask, no components are found outside the fitsmask. Auto-masking and
regular masking can be combined by specifying both -fits-mask <file> and auto-mask <threshold> on the
command line.

5.1.4 Availability

Auto-masking is available in multi-scale since WSClean version 2.1, and is available in all modes since WSClean 2.2.

5.1.5 References

The auto-masking algorithm is described and demonstrated in Offringa and Smirnov (2017).

5.2 Local RMS thresholding

Since WSClean 2.3, WSClean supports setting thresholding levels that are relative to the local RMS. This is useful when
the RMS varies strongly over the field of view. A typical use-case for local RMS thresholding is for cleaning images
that contain strong calibration artefacts. In this case, strong sources might generate strong artefacts. Those artefacts
might be much stronger than faint sources elsewhere in the field of view. To be able to clean those faint sources, but
not clean the artefacts, local RMS thresholding is required.

There are two ways of using local RMS thresholding:
* WSClean can automatically generate an RMS map; or
¢ An pre-made RMS map can be supplied to WSClean.
The two cases will be described in the sections below.

Note that when using local RMS thresholding, values reported during the minor cycles are no longer absolute fluxes,
but have been scaled in some way to account for the local RMS.

72 Chapter 5. Deconvolution modes

http://arxiv.org/abs/1706.06786

WSClean, Release git

5.2.1 Auto-generated RMS map

When WSClean is asked to use a local RMS without supplying an RMS image, WSClean will generate an RMS map.
This is done every major iteration, before the clean loop is called. A typical run looks like this:

wsclean -size 1024 1024 scale 10asec -local-rms \
-auto-threshold 3 -mgain 0.8 -niter 1000000 \
[...] observation.ms

The local RMS thresholding is typically to be used together with the -auto-threshold parameter. While it is pos-
sible to combine it with a normal -threshold parameter, which will scale the threshold relatively to the minimum
in the RMS map, this is not recommended. Local RMS thresholding can also be used together with [automatic mask-
ing](Masking) using the -auto-mask parameter. A typical run to do this looks like this:

wsclean -size 1024 1024 scale 10asec -local-rms \
-auto-threshold 0.3 -auto-mask 3 -mgain 0.8 -niter 1000000 \
-multiscale [...] observation.ms

Note that the -1local-rms parameter was called -rms-background before WSClean 2.4.

The default configuration is to calculate the RMS over a Gaussian kernel with dimensions of 25 times the PSF. This
value can be changed with the -local-rms-window option, for example:

wsclean -size 1024 1024 scale 10asec -local-rms \
-local-rms-window 10 -auto-threshold 3 -mgain 0.8 \
-niter 1000000 [...] \
observation.ms

Instead of just using the RMS, it is also possible to use a combination of the local RMS and the negated minimum
pixel. The formula used for this is max(window_rms, -1.5/5 x window_min) . This can be selected by adding
-local-rms-method rms-with-min. We have not seen much difference between using the normal local RMS or
this combined quantity.

5.2.2 Using a pre-existing RMS map

A pre-existing RMS map can be supplied with the -rms-background-image parameter, like this:

wsclean -size 1024 1024 -scale 10@asec -local-rms-image rmsmap.fits \
-auto-threshold 3 -mgain 0.8 -niter 1000000 [...] observation.ms

The input map (rmsmap . fits in this case) will have to have the size of the (trimmed) output image.

A typical use-case for this is to supply an RMS map created by a source detector. Generally, to use this method, it is
required to image the field twice. Also, when an automatically-created RMS map is used instead of a fixed pre-made
map, WSClean will adapt the RMS map each major iteration, and in most cases the automatic RMS map will therefore
be more accurate compared to a partially cleaned RMS map created by (for example) a source detector. The pre-existing
RMS map should therefore normally not be the first choice, but there are probably cases where it is useful.

5.2. Local RMS thresholding 73

WSClean, Release git

5.3 Wideband deconvolution

WSClean has a ‘wideband’ multi-frequency deconvolution mode, which allows cleaning channels joinedly. This means
that peak finding is performed in the sum of all channels, allowing deep cleaning, and the PSF is subtracted from each
channel & polarization individually, scaled to the value of the peak in that image, which takes care of spectral variation
and deconvolves each channel with its own PSF.

Wideband options are available since WSClean version 1.1.

5.3.1 Usage

A typical run in multi-frequency deconvolution would look like:

wsclean -join-channels -channels-out 4 [other parameters] \
<measurement set>

This outputs 4 deconvolved images at the different frequencies and the weighted average of those 4. This mode can be
combined with Cotton-Schwab imaging (with -mgain .. .) which would fill the MODEL_DATA column with frequency
dependent model info, so that it is possible to perform self-cal with the proper frequency information. Joining channels
can also be combined with joining polarizations (-join-polarizations, see polarimetric deconvolution) to clean
polarizations and channels both joinedly. This is available from version 1.5.

Joined channel deconvolution is computationally more expensive than bandwidth-integrated cleaning. If the processing
time (or memory) becomes untractable, the speed and memory usage can be improved by using channel interpolation
(see description of -~deconvolution-channels below) or by using parallel/subimage deconvolution.

Note: Something to be aware of is that the - join-channels parameter turns on MF weighting.

5.3.2 Multiple measurement sets and subbands

WSClean calculates the full available bandwidth (over all measurement sets) and splits that into chunks with the same
amount of input channels (or 1 off if the nr of input channels is not divisable by the nr of output channels). For example,
if you have four measurement sets where each contains data from a different subband, e.g. 100 MHz, 110 MHz, 200
MHz and 210 MHz, and you specify “-join-channels -channels-out 27, the first images will be centred at 105
MHz and contain data from the first two MSes, and the other images will be centred at 205 MHz.

Example:

wsclean -join-channels -channels-out 3 -niter 10000 \
-mgain 0.8 -threshold 0.01 \
band-100-MHz.ms band-110-MHz.ms \
band-145-MHz.ms band-155-MHz.ms \
band-190-MHz.ms band-200-MHz.ms

This will perform multi-frequency deconvolution and output images at 105 MHz, 150 MHz and 195 MHz. This works
since WSClean version 1.9.

In case the measurement sets have a different amout of channels and have gaps between them, the normal division of
WSClean might divide the channels somewhat undesirably. For example, the data of the MSSS survey observations
are stored in 10 measurement sets, each containing one ‘band’, but one of those 10 has fewer channels. The default
WSClean division divides those “missing” channels out over the bandwidth, producing this imaging table:

74 Chapter 5. Deconvolution modes

WSClean, Release git

Pol Ch JG %G In Freq(MHz) ch
| Independent group:

+-+-J-0 I O 0 0 0 119-121 (39
+-J-1 I 1 0 1 0 121-126 (40)
+-J-2 I 2 0 2 0 126-130 (39
+-J-3 I 3 0 3 0 130-136 (40)
+-J-4 I 4 0 4 0 136-146 (39
+-J-5 I 5 0 5 0 146-150 (40)
+-J-6 I 6 0 6 0O 150-152 (39)
+-J-7 I 7 0 7 0 156-158 (40)

There are two ways to remedy this. The first, most automated way is to use an option called -gap-channel-division
(available since WSClean 2.6), which calculates the gaps between channels, and splits the input channels into output
channels by splitting the largest gap until the number of output channels has been reached. For the above situation, this
gives the following table:

Pol Ch JG %G In Freq(MHz) ch
| Independent group:

+-+-J-0 I 0 0 0 0 119-121 (40)
+-J-1 I 1 0 1 0 124-126 (40)
+-J-2 I 2 0 2 0 128-130 (40
+-J-3 I 3 0 3 0 134-136 (40)
+-J-4 I 4 0 4 0 142-144 (36)
+-J-5 I 5 0 5 0 146-148 (40)
+-J-6 I 6 0 6 0O 150-152 (40)
+-J-7 I 7 0 7 0 156-158 (40)

Notice the different bandwidth per channel and output channel index 4 which now contains 36 channels.

The second option is to manually add splits by specifying frequencies. For this, the option
-channel-division-frequencies can be used. The list doesn’t necessarily contain all splits necessary. If
fewer splits are given than required, WSClean will further subdivide the remaining parts as necessary. Be aware that
splits are in Hz, but can be in scientific notation (e.g. 1.4e9 is 1.4 GHz). An example:

wsclean -size 512 512 -scale lamin -channels-out 8 \
-channel-division-frequencies 140e6,141e6,142e6 \
observation.ms
[..]
=== IMAGING TABLE ===
Pol Ch JG %G In Freq(MHz)

+-+-J-0 I 0 0 0 0 134-137 (39
+-+-J-1 I 1 1 1 0 137-140 (39
+-+-J-2 I 2 2 2 0 140-140 (6)
+-+-J-3 I 3 3 3 0 140-141 (7)
+-+-J-4 I 4 4 4 0 141-142 (6)
+-+-J- 5 I 5 5 5 0 142-142 (6)
+-+-J-6 I 6 6 6 0 142-153 (140)
+-+-1J-7 I 7 7 7 0 153-164 (141

5.3. Wideband deconvolution 75

WSClean, Release git

5.3.3 Fitting smooth spectra

The joined channel deconvolution method discussed above does not enforce a smooth spectra; each channel gets a
separate solution. If one wants to image many spectral channels separately, while it is known that the sources have
smooth behaviour, it is possible to enforce this during cleaning. Currently, WSClean supports fitting a polynomial
and fitting a double-logarithmic polynomial. The command line parameters for this are -fit-spectral-pol and
-fit-spectral-log-pol. Both require an extra parameter specifying the number of terms (degrees of freedom).
For example, -fit-spectral-log-pol 2 will fit a power law through all the output channels.

A simple — but very slow — example to perform cleaning with spectral fitting:

wsclean -multiscale -join-channels -channels-out 128 -niter 10000 \
-mgain 0.8 -auto-threshold 3 -fit-spectral-pol 4 observations.ms

This will fit a polynomial with 4 terms (i.e., a third-order polynomial). This would be similar to CASA multi-term
deconvolution with nterms=4. During each minor clean cycle, the 128 images at different frequencies will be added
together, the pixel with the highest summed brightness is selected, the brightness for that pixel is found for each image,
a 3rd order polynomial is fitted through those measurements and the smoothed “model” component is added to the
model, as well as convolved with the PSF and subtracted from the residual dirty image. Spectral fitting works in all
joined-channel modes (i.e., hogbom, multi-scale, iuwt, moresane).

As you might imagine, doing a clean with 128 images in memory is expensive, both in terms of memory and computing.
Since it is not necessary to have that many images in memory when fitting only a few terms, it is also possible to
decrease the number of output channels just during deconvolution. This is done with the -deconvolution-channels
parameter, for example:

wsclean -join-channels -channels-out 128 -niter 10000 \
-mgain 0.8 -auto-threshold 3 -fit-spectral-pol 4 \
-deconvolution-channels 8 observations.ms

This will decrease the number of images from 128 to 8 before starting the deconvolution by averaging groups of 16
channels together. Cleaning is then performed with just 8 images. After cleaning, the requested function (3rd order
polynomial in this case) is fitted to the model, and the model is interpolated using that function. This is much faster
than the previous command, and equally precise. Setting the deconvolution channels is supported in all modes since
WSClean 2.2. The spectral-fitting features were added in WSClean version 1.11.

5.3.4 Forced spectral indices

Spectral fitting is useful to reduce the degrees of freedom in deconvolution. It does not always produce accurate,
physical spectral indices. This can either be because the bandwidth is too small, sources are very complex causing
degeneracies, or both. WSClean version 2.12 has therefore a method called ‘forced spectrum fitting’. In this mode, a
pre-existing spectral index map is used during the deconvolution, and the resulting spectra of the model components
are forced onto this spectral index map.

The spectral index map may be the result of earlier runs or from fitting between data from other bandwidths / telescopes.
An added advantage is that those maps can be smoothed to limit the effect of noise and imaging artefacts. The mode is
enabled by combining -force-spectrum <fits filename> with -fit-log-pol 2. The fits file should have the
same dimensions and coordinate system as used for the imaging, and each pixel should hold a spectral index value.
This mode should currently not be used together with the -deconvolution-channels option.

Together with multiscale cleaning and source list output, this mode allows building (text) models of sources with
accurate spectral index information.

This method is currently being written up into an article — to be submitted somewhere in 2022.

76 Chapter 5. Deconvolution modes

WSClean, Release git

5.3.5 Fit normal or logarithmic polynomials?

In general, fitting polynomials (fit-spectral-pol) works better than fitting logarithmic functions
(fit-spectral-log-pol). The latter option fits every component to a power law or higher-termed logarith-
mic function. This works fine on strong sources, but when cleaning picks up some partly-negative artefacts, it can
create bad results and fail. As an example, when one spectral value is negative and the others are positive, a power-law
fit that minimizes the squared error, might create extremely high values at the edge channels.

As a side note, I believe that CASA also doesn’t fit logarithmic polynomials, but rather fits normal polynomials (I'm
not 100% sure from the papers about the technique, but from inspecting the CASA code, it seems to use normal
polynomials). Hence, getting CASA’s “nterms” behaviour is closest to -fit-spectral-pol.

5.3.6 Avoiding “steps” in the model data visibilities

When splitting up bandwidth with the -channels-out option, the output MODEL_DATA visibilities will have a step
function. For example, when splitting up the bandwidth of a 256 channel set in 4 parts (-channels-out 4), there will
be a step each 64 channels. When the MODEL_DATA is important, for example when removing the continuuum data from
a HI set, these steps might be undesirable. Using -fit-spectral-pol does not remove these steps; that option only
forces the individual images to obey a polynomial. To remove the steps, one would have to use -fit-spectral-pol
and specify as many channels to -channels-out as that are present in the measurement set. This is of course very
computationally and memory expensive, in particular during deconvolution. To make that possible in some cases, the
above option -deconvolution-channels can be used in combination with the other options.

Another option to solve these step functions is to interpolate in the frequency during the prediction (i.e. when calculating
the MODEL_DATA). WSClean can currently not do this, but will hopefully soon be implemented. Because of the already-
available features mentioned above it has not been of very high priority, since the quality improvement on continuum
imaging is rather small and the computational savings might only exist in some more exotic cases.

5.3.7 Relation to CASA’s multi-term deconvolution

To avoid confusion, WSClean’s wide-band mode is not the same as the multi-frequency deconvolution algorithm in
CASA, i.e., the algorithm described in Sault & Wieringa (1994), further enhanced in Rau and Cornwell (2011). The
multi-frequency deconvolution algorithm in WSClean is called “joined-channel deconvolution” and is described in
Offringa and Smirnov (2017). As shown there, the multi-frequency implementation of WSClean is computationally
orders of magnitude faster than MSMFS, which is the most important difference between the two algorithms. Accuracy
wise, they produce similar results.

Although WSClean’s mode and CASA’s mode both mitigate the problem of spectral variation over the imaged band-
width, the underlying algorithms are different and have different settings. Both CASA and WSClean can fit smooth
functions over frequency. WSClean has additional functionality for the imaging of cubes that can have unsmooth
spectral functions, such as for spectral lines or off-axis imaging (where the beam causes large/steep fluctuations over
frequency). Smooth function fitting is implemented in WSClean version 1.10.

5.4 Polarimetric deconvolution

WSClean can perform deconvolution by combining polarizations. Similar to joining channels, this implies that peaks
(and component shape) are searched in the integrated values over the selected polarizations, but the components
strengths are determined from each polarization once its location is selected.

This method improves the quality of polarized images. It can also be used to perform self-cal to keep the polarized
flux accurate, although it requires some flux to be present in the polarized images (instrumental leakage). In general,
Stokes I quality is not improved by using this method. The method increases computational and memory cost.

5.4. Polarimetric deconvolution 77

http://adsabs.harvard.edu/abs/1994A%26AS..108..585S
http://arxiv.org/abs/1106.2745
https://arxiv.org/abs/1706.06786

WSClean, Release git

Here are two examples for using joined polarization cleaning:

wsclean -pol xx,yy -join-polarizations -threshold 1 -mgain 0.8 -niter 10000 \
-scale 15amin -size 1024 1024 -weight briggs 0 galaxy.ms

wsclean -pol iquv -join-polarizations -channels-out 8 -join-channels \
-fits-mask 3c196-mask.fits -threshold 1 -mgain 0.8 -niter 10000 \
-scale 5asec -size 6000 6000 3c196.ms

Joined-polarization cleaning works in combination with multi-scale cleaning, multi-frequency deconvolution and
masked cleaning.

If you are looking to do rotation measure synthesis with WSClean, have a look at the RM-synthesis manual page that
describes some particulars for this.

5.4.1 Linking polarizations

Since WSClean 2.6 it is possible to “link” polarizations. This has the effect of selecting a subset of polarizations for
cleaning, but then subtracting components from all imaged polarizations. This results in that the subset of polarizations
are cleaned as if they are the only polarizations being imaged, while the others polarizations are still saved, and sources
that appear in the subset of polarizations are also cleaned in the other polarizations. Effectively, structure that appears
mostly in the linked polarization(s) will be cleaned better. Hence, this is particularly useful for cleaning Stokes I or the
XX,YY polarizations.

Note that this is not the recommended setting for RM synthesis; see above.

Linking polarizations is turned on with the -1link-polarizations option, after which the set of polarizations (or
single polarization) should be specified similar to the syntax for -pol. An example:

wsclean -pol xx,xy,yxXx,yy -link-polarizations xx,yy -auto-threshold 3 -mgain 0.8 \
-niter 10000 -scale lamin -size 4096 4096 observation.ms

5.5 Rotation-measure (RM) synthesis

WSClean has some options which aid rotation-measure synthesis. The option -squared-channel-joining is in
particular aimed at performing RM synthesis when combined with -join-channels and -join-polarizations.
This is explained below.

Before reading this chapter, it is useful to understand the following concepts:
* Making image cubes
» Wideband deconvolution

e Polarimetric deconvolution

78 Chapter 5. Deconvolution modes

WSClean, Release git

5.5.1 Basic RM-synthesis imaging

For RM-synthesis, one images the Stokes Q and Stokes U polarizations of a measurement set and produces images at
many frequencies. After that, this QU-frequency cube can be Fourier transformed with an external tool to produce an
RM cube.

Of course, making those QU images can be done with WSClean as expected, but there are some extra options which
can be useful for RM-synthesis. The basic approach to make the cube is described in the manual page Making image
cubes, where it is described how to use the -channels-out option to partition the bandwidth. The -pol option can
be added to do this for Q and U:

wsclean -pol QU -channels-out 100 \
-scale lamin -size 1024 1024 observation.ms

This produces an uncleaned image cube for the Q and U polarizations. Standard cleaning parameters can be added
to clean each polarization and each channel individually. However, by doing so one is limited by the noise in a single
channel. This can be slightly improved by using the - join-polarizations option, and perform peak finding in QU
or IQUV space. It is however beneficial to use the full bandwidth for cleaning. This is described below.

5.5.2 Using entire bandwidth for cleaning QU cubes

WSClean has multi-frequency deconvolution options as described on the multi-frequency deconvolution chapter. This
mode allows using all images together for the peak finding, while still subtracting the peaks from the individual images.
The default is to combine the images by summing over the channels. For example, if one is imaging Stokes Q over
100 channels and -join-channels is used, peak finding is performed on the integrated bandwidth in Stokes Q. This
is undesirable when expecting flux with non-zero RM values, because the flux will average out over the bandwidth.
Therefore, the option -squared-channel-joining was added. When added, WSClean will perform peak finding in
the sum of squares of the images. Values with high RM values will thus not average out. This option can be combined
with -join-polarizations to take the sum over Q? + U?. This is therefore the recommended way to perform
RM-synthesis:

wsclean -pol QU -join-polarization \
-join-channels -squared-channel-joining -channels-out <nr> \
[-niter/-mgain/-scale/... etc.] observation.ms

This mode allows one to clean deeper and more accurately compared to per-channel QU cleaning.

When using -squared-joining, an MFS image will be outputted as normal in addition to the channel images, and
the MFS image will still have the normal average value (not the sum of squares). A cleaning threshold can be given as
normal in Jy, and cleaning stops when the sqrt of the average of squares is below that value. The statistics of this value
is thus slightly different as normal, and in general one will start cleaning the noise quicker. Some experimentation with
the threshold might be required.

The squared channel joining also works together with the multi-scale mode. I have noticed though that the multi-scale
algorithm regularly gets stuck when it is asked to search on squared values. This is because the sum of squares might
show a large structure, while it is actually just a composition of small structures in the individual channels/polarizations,
so that the fit to each individual channel will not remove anything, and WSClean will continue to find that large structure.
If this happens, I would first suggest to clean the Q and U polarizations independently: the squared sum over one
polarization is much less likely to behave this way. Otherwise, you could stop cleaning before the problem occurs,
or turn multi-scale off altogether. There is a somewhat trivial fix for wsclean to git rid of this issue (namely to first
convolve each channel and then integrate instead of integrating and then convolving), which I hope to implement in the
future.

5.5. Rotation-measure (RM) synthesis 79

WSClean, Release git

5.5.3 What is calculated?

Here are a few examples, along with a description of how peak finding is performed with the given settings:

wsclean -pol QU -channels-out 100 ...

Cleaning is performed indepently for each polarization, peaks are found in each image.

wsclean -pol QU -join-polarizations -channels-out 100 ...

Cleaning is performed in Q2 + U”2, but independently for each channel.

wsclean -pol Q -join-channels -channels-out 100

Cleaning is performed in sum over channels of Q_ch: Pixels with non-zero RM values will average out and will not be
cleaned (-squared-channel - joining should be added).

wsclean -pol QU -join-channels -channels-out 100

Cleaning is performed in sum over channels of Q_ch and separately for Q and U. Again, pixels with non-zero RM
values will average out and will not be cleaned (-squared-channel-joining should be added).

wsclean -pol QU -join-polarizations -join-channels -squared-channel-joining -channels-
—out 100 ...

Cleaning is performed in sum over channels of Q?%, + U?,. When doing RM-synthesis, this is the most sensible
option.

wsclean -pol QU -join-polarizations -join-channels -channels-out 100 ...

Cleaning is performed in sum over channels of Qgh + Ufh. Note that in this mode, flux with non-zero RM-values
also does not get averaged out, hence squaring is not stricly necessary. The only difference between this example and
the above example including -squared-channel-joining is the noise properties during peak finding: the square
root makes the noise behave slightly worse, hence squaring is preferred (albeit that the difference is probably minor).

Note that these examples only differ in how cleaning is performed, they do not affect the output images otherwise.

5.5.4 Availability

-squared-channel-joining is available since WSClean 1.12.

5.6 Multi-scale cleaning

Multi-scale cleaning is useful for accurate deconvolution of resolved sources.

80 Chapter 5. Deconvolution modes

WSClean, Release git

5.6.1 Introduction

WSClean supports multi-scale deconvolution with a new algorithm. Like Casa, WSClean’s multi-scale deconvolution
selects the highest peak and subtracts it with the best fitting ‘scale’, although internally it works somewhat different.

In WSClean, the scales to fit for do not have to be specified; WSClean will automatically use as many scales as necessary.
The delta scale is always present. The next scale is calculated relative to the synthesized beam. Further scales are added
by continuing to multiply by two until the scale is larger than the image size.

Multi-scale deconvolution can be turned on by added -multiscale to the command line. The other clean parameters
that are also used for “normal” clean runs, work in multisscale mode in the same way. Here’s an MWA example of a
typical multi-scale deconvolution:

wsclean -multiscale -mgain 0.8 -niter 50000 -auto-threshold 5 \
-size 2048 2048 -scale 0.8amin vela.ms

This is a simple cleaning run, using Cotton-Schwab iterations subtracting 80% of the flux in each major iteration. The
output is a normal dirty, residual, etc. image, but the model will be composed of the combination of several scales.

5.6.2 Bias parameter

There’s one specific multi-scale parameter to tweak the results: “-multiscale-scale-bias”. This parameter bal-
ances between how sensitive the algorithm is towards large scales compared to smaller scales. Lower values will clean
larger scales earlier and deeper. It’s default is 0.6, which means something like “if a peak is 0.6 times larger at a 2x larger
scale, select the larger scale”. (Peaks are normalized by their scale size, so the actual selection is a bit more complex).
This implies that a smaller value favours selection of larger scales. The value 0.6 seems to generally work well, and
was also shown to have favourable properties (Offringa & Smirnov 2017). If you use Briggs or Natural weighting to
accentuate larger scales, it might be necessary/better to increase the value. In a LOFAR imaging with Briggs weighting
and robustness of 0.5 (somewhat towards natural), I noticed slightly better results with a value of 0.7. With 0.6, the
delta scale was almost never used. The following command runs WSClean with a scale bias of 0.7:

wsclean -multiscale -multiscale-scale-bias 0.7 -mgain 0.8 \
-niter 50000 -auto-threshold 5 -size 2048 2048 -scale 0.8amin \
vela.ms

CASA’s MSMFS and Moresane determine automatic multiscale bias values based on the strength of the PSF and/or the
SNR at a given scale. This however causes image weighting to no longer have any effect on the deconvolution, which
makes it impossible to tweak and/or focus on larger scales first. Therefore, WSClean uses the bias value.

5.6.3 Multi-scale with multi-frequency or polarimetric cleaning

The multi-scale algorithm works well in combination with the parameters “-join-channels -channels-out”. This
woul perform peak finding and scale selection on the integrated image, and fit the found scale to each output frequency.
This mode is explain in the wide-band imaging chapter. In this mode, corrections are made for a wide band with a
changing flux over frequency. Therefore, this mode is somewhat similar to CASA’s MSMFS mode, but it is a differ-
ent algorithm. The following statement would split the total bandwidth in four parts, and perform multi-frequency
deconvolution.

wsclean -multiscale -channels-out 4 -join-channels -mgain 0.8 \
-niter 50000 -auto-threshold 5 -size 2048 2048 -scale 0.8amin \
vela.ms

5.6. Multi-scale cleaning 81

WSClean, Release git

Multi-scale clean also works with polarimetrc cleaning in a similar way. The combination of multi-frequency and
multi-polarization imaging is also possible. For example, the following statement makes eight images; four images of
both the xx and yy polarization, and cleaning is performed on the full integrated image:

wsclean -multiscale -pol xx,yy -join-polarizations \
-channels-out 4 -join-channels -mgain 0.8 \
-niter 50000 -auto-threshold 5 -size 2048 2048 -scale 0.8amin \
vela.ms

5.6.4 Masks

Multi-scale cleaning works in combination with masks. If a mask is used, WSClean will only consider peaks that are
in selected areas. For non-delta-scales, this implies that the centre of the structure has to lie in a selected area.

Auto-masking is also possible in combination with multi-scale cleaning, and is in fact one of WSClean’s major im-
provements over other multi-scale algorithms, in terms of deconvolution quality (as was shown in Offringa & Smirnov
2017), and does even better than compressive sensing algorithms algorithms in terms of residual RMS (but not al-
ways in terms of model image quality). Because thresholds are calculated automatically, a cleaning mode such as the
following command works often well without further tweaking:

wsclean -multiscale -auto-threshold 1 -auto-mask 5 \
-niter 1000000 -mgain 0.8 \
-scale lamin -size 4096 4096 obs.ms

For more info about masking, see the chapter on masks and auto-masking.

5.6.5 References

WSClean uses a multi-scale algorithm that is an optimized version of Cornwell (2018). The full algorithm is described
in Offringa and Smirnov (2017).

5.6.6 History

This section will describe the multi-scale algorithm introduced in WSClean 1.9. Previous WSClean versions had a
different multi-scale implementation, which is now deprecated.

5.7 IUWT compressed sensing

IUWT stands for isotropic undecimated wavelet transform, which is a wavelet transform suitable for astronomical
imaging. The IUWT is a way to decompose an image into different scales, similar to multi-scale clean. The [IUWT
approach is combined with a conjugate gradient deconvolution step. This is fundamentally different to the CLEAN
approach that removes a single peak at a time.

The IUWT and MORESANE methods are somewhat experimental algorithms. They have shown good results on well
calibrated data, but at the same time have shown rather bad results for data that (still) contain calibration errors. In the
latter case, normal cleaning performs better. Also, with the advancement of multi-scale cleaning, compressed sensing
methods have become relevant only to corner cases.

82 Chapter 5. Deconvolution modes

http://ieeexplore.ieee.org/document/4703304/
https://arxiv.org/abs/1706.06786

WSClean, Release git

5.7.1 Relation to MORESANE

WSClean’s [IUWT deconvolution method is an extension/rewrite of the MORESANE deconvolution
algorithm. PyMORESANE also uses [IUWT and the conjugate gradient method, and is originally implemented by
Jonathan Kenyon. It has shown great results on some obervations. It is implemented in Python, and can be used inside
WSClean as described on the [MORESANE]J(MORESANE) page. The native Python implementation is quite slow,
although it was specialized for GPUs, and when these could be used, the algorithm was faster. Reasons to implement
a new algorithm are: to have a fast implementation in native C++ even without GPUs; to support multi-frequency and
joined polarization deconvolution; and to support masks.

5.7.2 Usage

The IUWT deconvolution method is enabled with option “-iuwt”. This method accepts all of the normal parameters.
TUWT supports masking since WSClean 1.12. Like the -multiscale parameter (see multiscale), it is enabled with a
single option and has reasonably optimized default settings. However, iterations are much slower. At the same time, it
subtract much more flux per iteration, hence also needs fewer iterations. Therefore, -niter should normally be much
lower than for cleaning; typical values are ~200 for complex images. Also, “-gain” can be somewhat higher, because
each minor iteration performs a subminor iteration to deconvolve selected scales. A typical value for -gain is 0.2.
Altogether, a typical IUWT run looks like this:

wsclean -iuwt -gain 0.2 -mgain 0.6 -niter 200 \
-size 1024 1024 -scale 2.4amin cyga.ms

Wideband cleaning and polarimetric deconvolution are supported, and implemented in the same way as for multi-scale
cleaning.

5.8 MORESANE deconvolution

WSClean supports deconvolution with the MORESANE algorithm, which is a compressed sensing method. The
MORESANE algorithm is described by Dabbech et al. (2015).

WSClean also implements a newer /[UWT deconvolution algorithm that supersedes MORESANE in most cases. The
new IUWT mode supports more features, such as multi-frequency and multi-polarization deconvolution, and the CPU
version is faster. A full proper comparison between MORESANE and IUWT has yet to be performed.

5.8.1 Using MORESANE

WSClean uses the Python implementation of MORESANE, written by Jonathan Kenyon. To use the MORESANE algo-
rithm, you have to manually install the PYMORESANE source code. See https://github.com/ratt-ru/PyMORESANE.

Once installed, you can run wsclean with the -moresane-ext parameter. Directly after the -moresane-ext parameter, the
full path of the ‘runsane’ (older versions: ‘pymoresane.py’) file needs to be specified, e.g.:

wsclean -moresane-ext /usr/local/bin/runsane [other parameters] \
obs.ms

Most normal Clean parameters do not have effect on the moresane deconvolution. The following parameters influence
MORESANE deconvolution:

e The -mgain parameter turns on a major loop, thereby correcting w-terms in the model. In general, w-terms
cause the PSF not to be invariant and moresane does by itself not correct for this. At this point, its exact value
does not matter, except that setting it to 1 (the default) implies no major iterations, while setting it lower than one
turns on major iterations. Setting it thus lower than 1 is recommended for good imaging.

5.8. MORESANE deconvolution 83

http://arxiv.org/abs/1412.5387
https://github.com/ratt-ru/PyMORESANE

WSClean, Release git

* The -niter parameter sets the number of major (!) iterations to be performed. Setting it to 1 will run MoreSane
once, and (with mgain!=1) it will subsequently immediately finish after a prediction-imaging round. Setting
it higher will call MoreSane more often. In later MoreSane rounds, WSClean will provide MoreSane with
the residual image to which the model convolved with the invariant static PSF has been added. This improves
accuracy somewhat, because intuitively the image now consists of a PSF that is “less varying”. In images where
w-values are relevant, I notice significant improvement in the second and third iteration, after which the image
seems to have been converged and further iterations do not noticably change the image.

* Specifying ‘-no-negative’ will constrain the model to not have negative values. This turns on the ‘-ep’ param-
eter of PYMORESANE. So far, I've not seen this make the model better; in general, false negative components
are replaced by other false positive components.

» Parameter “-moresane-arg” allows forwarding extra arguments to Moresane.
* Masks are also forwarded to Moresane.
* Parameter “-moresane-sl” sets the sigma depth level for different iterations.

NB: According to Jonathan, PyMORESANE only works with image sizes that are a power of two. Apparently this is
solved in newer versions, but only in CPU mode.

NB2: The -niter has a significantly different meaning when using MoreSane deconvolution. Specifying hundreds of
iterations will not improve quality and will take forever!

I have tested the MORESANE algorithm on images with the (highly resolved) Vela and Puppis A supernova remnants
and got very good deconvolution results. My best results were imaged with these settings:

wsclean -niter 3 -mgain 0.9 -moresane "which runsane’ \
-size 2048 2048 -scale 1.2amin \
-name vela-and-puppis vela-and-puppis.ms

Cleaning large images can be very expensive; 1-2k pixel images is doable; 1k takes tens of minutes, 2k takes a few
hours. It goes up by more than the square, so you probably won’t want to try this on 16k LOFAR images, but rather on
small images centred on the diffuse sources.

Finally, the MORESANE algorithm does not support joined deconvolutions, so it will not work with the
-join-polarizations or -join-channels modi. The /[UWT deconvolution mode can be used for this.

5.8.2 History

WSClean supports deconvolution with the MORESANE algorithm since version 1.7. WSClean 1.8 added parameters
“-moresane-arg” and added support for passing masks to Moresane. Version 1.9 added parameter “-moresane-s1”.

5.9 Parallel deconvolution

WSClean can speed up the deconvolution process by separately deconvolving the sub-images. This is highly desirable
for cleaning large images, e.g. 15K x 15K LOFAR images, and this became necessary because the /DG gridder can
easily produce such images. Despite that WSClean has very fast multi-scale multi-frequency algorithms, IDG has
shifted the computational bottleneck back to the deconvolution process.

The parallel cleaning process is fully automated and is turned on with one parameter: -parallel-deconvolution
<maxsize>, which requires one parameter giving the maximum size of the sub-images. Values of 1024-4096 work well
for large images. Smaller values would split the image in very many subimages, increases the computational cost of
splitting, whereas larger values might lead to too few subimages, and this might therefore lead to lesser parallelization.

84 Chapter 5. Deconvolution modes

WSClean, Release git

5.9.1 Implementation

Images are split using a (constrained) path-finding algorithm called Dijkstra’s algorithm, which calculates the smallest
absolute path through the image, constrained to be near a desired splitting boundary. The smallest absolute path is
re-determined before every major deconvolution iteration. Here is an example on a small image:

5.9. Parallel deconvolution 85

https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm

WSClean, Release git

86 Chapter 5. Deconvolution modes

CHAPTER
SIX

RESULTS & PROBLEMS

6.1 Imaging artefacts

Making a more accurate image is often more expensive, hence the default settings of WSClean are balanced between
speed and accuracy, such that average imaging scenarios show accurate fluxes and no visible artefacts. Nevertheless,
in high dynamic range scenarios or strong off-axis sources near the edge of the image, artefacts may appear. In those
cases, you might want to increase some of the accuracy settings. Here is a short description of the most common
problems.

6.1.1 W-term correction

WSClean uses by default the w-stacking quite a low number of w-layers. This is because w-layers can increase memory
consumption and speed quite significantly, and in most cases the default doesn’t introduce any artefacts. The default
settings that WSClean use correspond to a decorrelation over 1 radian at the image edge. This translates to quite a small
error on sources not near the image edge. However, in the case of strong off-axis sources, those sources might show
errors. In the case of snapshot imaging (typical for the MWA), faint “aliased”” sources might show. In most cases, these
average down when integrating more data.

If you suspect your image is affected by w-term corrections, you could: * Use the w-gridding gridder; * Increase the
number of w-layers. The easiest way to do that is by setting the -nwlayers-factor option. The default is 1. With a value
of 3, the number of w-layers will be 3 times higher, implying that the decorrelation between w-layers is over 1/3 radian.
(The -nwlayers-factor option is available since WSClean version 2.7

6.2 Diverging clean

It may occassionally happen that CLEAN diverges. This might cause it to produce extremely high or NaN model flux
values, or it might get into a ‘feedback’ loop and keep doing major cleaning iterations without progressing (in this case,
‘not converging’ is probably a better term than ‘diverging’).

The problem is more common during multi-scale clean, but can ocassionally occur during single-scale cleaning.

During multi-scale cleaning, in the command line output of WSClean this typically looks like the following:

Iteration 5978, scale 761 px : 923.32 mly at 2148,2892
Iteration 6100, scale 1521 px : -930.26 mly at 4238,2897
Iteration 708620, scale 48 px : -nan Jy at 0,0

What this means is that before iteration 708620, the deconvolution process has diverged. At the beginning of iteration
708620, the peak in the image is “-~NaN”, according to the log. When, instead of reporting NaN, it reports suddenly a
very high value, e.g. 1e7 Kly, this has the same cause. Be aware that the reported position (in this case 0,0) is not the

87

WSClean, Release git

source of the problem; the iteration that caused the problem happened before 708620, but is not in the output. These
components somehow became coupled and diverged.

6.2.1 Causes & solutions

Here are possible causes:

1. When using multi-scale clean, a common cause is that (very) large scales cause problems. As can be seen

in the above output, this is likely here the case, since the iteration that caused problems (Iteration 6100)
used a large scale (1521 px). You can use these methods to avoid the issue:

A. Don’t clean with large scales. Using -multiscale-max-scales the number of scales can be limitted.
Alternatively (but less preferred), using -multiscale-scales a custom list can be provided. If the
image does not contain flux at these scales, you can leave the largest scales out without loss in image
fidelity. Fewer scales will also speed op multi-scale.

B. Stop before the problem occurs, by adding one or more stopping criteria. -nmiter can especially be
helpful for this, but using -niter, -auto-threshold etc can help as well.

. Cleaning too deep. It occasionally occurs that cleaning into the noise causes divergence. This is simply fixed by

using an appropriate auto-threshold level (e.g. -auto-threshold 5, or —~auto-threshold 1 -auto-mask
5).

. Having bright emission near/against the edge of the image. This can cause a ripple at the edge, and produce

weird results. If this is a likely cause, then it is best to increase the image size. Be aware that when using the
parallel-deconvolution option, the image has many more edges. Make sure that the parallel deconvolution
“size” parameter is not too small.

. Using a value of mgain that’s too high. The default of 0.8 is quite stable, but if your PSF has high sidelobes, this

value might still be too large. In that case, try lowering it to 0.7 or 0.6. Note that this increases the nr of major
iterations, so it can slow down the imaging considerably.

88

Chapter 6. Results & problems

CHAPTER
SEVEN

TECHNICAL DETAILS

Contents:

7.1 Component lists

The benefit of a component list is that it allows representing the components of multi-scale cleaning without ‘pixelizing’
the larger kernels, thereby decreasing the number of required components in a sky model compared to representing all
components with delta scales.

The option is enabled by adding -save-source-1ist on the command line

7.1.1 File format

The component list file format is compatible with the Blackboard Self-cal DP3 sky model formats, but be aware that
versions after April 2017 of DP3 support the polynomial spectral function that is used.

When -save-source-1ist is added on the command line, a text file named <prefix>-sources.txt is saved. The
file contains comma-separated values and looks as follows:

Format = Name, Type, Ra, Dec, I, SpectralIndex, LogarithmicSI, ReferenceFrequency=
—,'125584411.621094"', MajorAxis, MinorAxis, Orientation
s0cO®,POINT,08:28:05.152,39.35.08.511,0.000748810650400475,[-0.00695379313004673,-0.
-.0849693907803257], false,125584411.621094, ,,
s®c1,POINT,08:22:27.658,39.37.38.353,-0.000154968071120503,[-0.000898135869319762,0.
-.0183710297781511], false,125584411.621094, ,,
s®c2,POINT,08:18:44.309,39.38.37.773,0.000233552686127518,[-0.000869089801859608,0.
—.0828587947079702] ,false,125584411.621094, ,,
s0c3,POINT,08:03:07.538,39.37.02.717,0.000919058240247659,[0.001264109956439,0.
-.0201438425344451], false,125584411.621094, ,,

[..]
s1c®,GAUSSIAN,08:31:10.37,41.47.17.131,0.000723326710524984,[0.00344317919656096,-0.
-.115990377833407] ,false,125584411.621094,83.6144111272856,83.6144111272856,0
slcl,GAUSSIAN,®7:51:09.24,42.32.46.177,0.000660490865128381, [0.00404869217508666,-0.
-.011844732049232],false,125584411.621094,83.6144111272856,83.6144111272856,0

L..]

Lt}

Each source (i.e., clean component) is one line in the file. The first line is a header starting with “Format = ...
that describes the columns. The header is allowed to specify a default value for this column, as is done above for the
reference frequency. When a field is left empty, it should take the default value. See the BBS / DP3 documentation for
more info on default values.

89

WSClean, Release git

7.1.2 The columns
The Name contains a unique identifier for this component. In the current format, it consists of the letter ‘s’ followed
by the scale index of the component (0 meaning the smallest scale).

The Type column is either POINT or GAUSSIAN. For a point component, the axes and orientation fields are empty. A
Gaussian is a standard Gaussian as often used in sky models. When asking WSClean to output a source list, it will
automatically enable Gaussian shaped components, instead of the default tapered quadratic.

RA and dec are the central coordinates of the component, in notation of “hh:mm:ss.sss” and “dd.mm.ss.sss”.
The I column represents the flux density in Jy at the reference frequency.

The Spectrallndex column is an array of numbers surround by square brackets, that represent the coefficients of the
logarithmic or ordinary polynomial (see logarithmicSI), when normalized to the reference frequency. The logarithmic
polynomial function is given by

v v
S(v) = exp <1og So + colog(—) + ¢1 log(—)? + >
1%} o
Note that c(represents the spectral index term in this case.

An ordinary polynomial function is evaluated as

1% 1%
S(U) =Sy +p0(70 - 1) +p1(170 — 1)2 + ...

Note that -1 is subtracted in the base. This makes sure that .Sj (the “Stokes I value) represents the flux density at the
reference frequency.

LogarithmicSI is true or false, denoting that the spectral index column uses logarithmic or ordinary polynomials,
respectively. Note that in absense of this column, logarithmic polynomials are used.

ReferenceFrequency gives the frequency in Hz at which the polynomial or logarithmic polynomial is normalized.

The MajorAxis, MinorAxis and Orientation columns define the shape of the Gaussian. The axes are given in units of
arcseconds, and orientation is in degrees. Note that currently the major and minor axis of scales are always the same,
and thus the orientation has no effect (and is therefore always zero).

7.1.3 History

WSClean supports output of a component list since version 2.4. Note that version 2.3 supported a different format
which is now deprecated.

7.2 Weighting and gridding

I got a few questions about weighting and gridding, so I decided to write down a technical description of the way the
w-stacking algorithm of WSClean performs weighting and gridding. Note that this does not hold for the w-gridding
and idg gridders.

90 Chapter 7. Technical details

WSClean, Release git

7.2.1 Weighting

Uniform, natural and Briggs’ weighting work exactly like in Casa and other imagers:

¢ Uniform weighting will grid the weights on one “uv” plane (not accounting for w), and each sample will be
weighted by this value before being gridded on one of the w-layers. Because it needs to grid the weights prior
to filling the wlayers, an extra pass through the measurement set is required. Therefore, this option is slightly
slower (~a percent) than the natural and mwa weighting modes, but normally looks the best.

 Natural weighting won’t weight the samples before gridding, causing scales that have more baselines to dominate
the image. For the case of the MWA, it means that because of the many small baselines, the large scales will
dominate the image.

* I’ve also implemented Briggs’ weighting (use with e.g. “-weight briggs 0.5”) and super-pixel weighting
(e.g. “-super-weight 3”). Briggs weighting works exactly like Casa’s Briggs weighting, although I've heard
that the same WSClean Briggs robust value is not exactly identical to the CASA robust value.

Super-pixel weighting is similar to Casa’s “super-uniform” weighting, but is more flexible and can also be applied to
other weighting schemes, for example to get “super-Briggs’” weighting. You can also set the super-pixel weighting
factor to less than one to get sub-pixel weighting, which changes the image more towards naturally weighted. Super-
pixel weighting might be nice on very large (full-sky) images, since the immense uv resolution might otherwise start
to make your beam become natural-ish weighted (Dan Briggs’ thesis) describes sub/super-pixel weighting very well).
I think a superweight of “image resolution / 2.5k should be good to keep the beam uniform/Briggs’ weighted.

The weighting scheme is multiplicative to the normal sample weight, i.e., prior to the weighting scheme, samples will
be weighted by their weight as specified in the measurement set, and receive zero weight if they are flagged.

7.2.2 Gridding

WSClean can use several Gridding functions. Options include:
* Nearest-neighbour gridding
* A truncated sinc (rectangular function)
* The Kaisser-Bessel function
* A sinc function windowed by a Kaisser-Bessel function
* A Gaussian
* The Blackman-Nuttall window
* The Blackman-Harish window

The KB window is the default, and for most purposes accurate enough. By default, the function is 1023x supersampled
with a kernel of size 7. With NN, a sample is placed at the nearest uv-pixel. Especially for small images, that might
create aliasing and inaccurate fluxes. The supersampling places samples more accurately on the uv-grid, giving slightly
more accurate fluxes. A windowed low-pass filter attenuates aliased sources. Sources that are just outside the field of
view might otherwise be aliased back into the image. A Kaiser-Bessel function is very similar, but is considered slightly
less optimal compared to the optimized prolate spheroidal function.

A 7 pixel low-pass filter is not very strong, and strong off-axis sources might show up as aliases (“ghost sources”).
The best method to deal with those is to increase the field of view; that will also allow proper cleaning of those.
Image accuracy is not so sensitive to the size or type of the windowing function, but is much more controlled by the
oversampling rate. WSClean uses by default a quite large oversampling rate, because this is trivial to do with the
w-stacking algorithm. This is also the reason why WSClean’s output images are more accurate than when using a
w-projection implementation (e.g. as implemented in CASA).

When making an image cube, it is possible to either grid the weights for each channel separately, or all on the same
grid. The latter is called ‘MFS weighting’; this is explained in more detail on the MF weighting page.

7.2. Weighting and gridding 91

http://www.aoc.nrao.edu/dissertations/dbriggs/

WSClean, Release git

7.3 Restoring beam size

This chapter describes WSClean’s algorithm for determining the synthesized beam major and minor axes and the
position angle (PA).

The input to the fitting algorithm is the PSF size and an estimate of the PSF FWHM that is determined from the PSF
size. Given this first estimate of the beamsize, a box width and height is calculated to be 10x the estimated FWHM of
the PSF around the central pixel. A 3-parameter least-squares fit is then performed to find the beam’s major, minor and
PA values inside that box, to minimize the sum-of-squares difference between the fitted model and the real PSF over
all pixels in that box of 10x the size of the PSF. So this includes values out to a few lobes.

Using the full image to do the fit is too expensive — the factor of 10 is to make the fitting go fast. The fit is generally
equal to a fit using a larger area.

There are some added heuristical things when fits are very different from the initial estimated PSF: WSClean will
iteratively recalculate the fitting box and refit.

7.3.1 Highly elliptical restoring beams

When the fit is highly elliptical and when this is undesirable, the option -~circular-beam can be added. This constrains
the fit to be circular. When forcing a circular beam, WSClean makes still sure that the resulting flux scale of restored
sources is correct. This may improve the esthetics of produced images, but it might of course give a false sense of a
circular beam.

7.3.2 History

e In WSClean 2.6, the option -beam-fitting-size was added. It sets the box size to be used during the fit. If the
beam that is fitted is different from what is expected, changing this value might help. It seems that in particular
lowering the value to 1-3 can solve certain (rare) issues.

e In WSClean 2.5, an improved fit for small and forced circular beams was added.

7.4 Polarizations and weights

7.4.1 Calculating Stokes | values

Forming Stokes I from linear/circular polarizations (XX/YY or LL/RR) is not straightforward when visibilities are
weighted. When imaging Stokes I, WSClean combines XX and YY (or LL and RR). If either of the polarizations is
flagged, the visibility is completely flagged. This means for example that an observation that has all LL visibilities
flagged, will result in an empty Stokes I image. Some imagers “solve” this by being able to image “psuedo Stokes I”,
which is defined as the average over the unflagged polarizations. In case sources in the target image are polarized, this
obviously leads to incorrect Stokes I values. This is often not such a concern, although with instrumental polarization
leakage caused by fixed dipoles (LOFAR, MWA, etc.) this clearly is undesirable. WSClean therefore does not imple-
ment this directly, but can achieve the same effect: by imaging both XX and YY (or LL and RR) polarizations, and using
the -join-polarizations option, you will be able to image and clean on the combination of the two polarizations.
An example command:

wsclean -join-polarizations -pol xx,yy -niter 1000000 \
-auto-threshold 3 -mgain 0.8 myobservation.ms

92 Chapter 7. Technical details

WSClean, Release git

7.4.2 Visibility weights

Visibility weights are the weights that are read from the WEIGHT_SPECTRUM column: each visibility has an associated
weight value (do not confuse these with image weights). When imaging one instrumental polarization, such as XX,
just the XX weights are used, so no weights are averaged. When imaging Stokes I, the minimum value of XX and
YY (or LL and RR) weights are used. A weight of O therefore prevents imaging the average I value altogether, as it
should (because a missing XX value means that Stokes I has a completely undetermined value). It’s not the statistically
optimal, which would be:

wr = 1 1

wx x Wyy

but it is easier/faster, almost as good and has some implementation advantages.

7.5 FITS keywords

7.5.1 Meaning of frequency keywords

WSClean uses the standard CRVAL and CDELT keywords for the frequency axis. These specify the central frequency
and frequency width of the output channel, respectively. Because the frequency axis is the third dimension (the default
dimensions are ra, dec, frequency, polarization), this specifically means:

CRVAL3 -- centre frequency of the output channel
CDELT3 -- width of the output channel

Note: CDELTS3 is sometimes used differently: in image cubes with multiple spectral images, CDELT3 is not the
channel width, but the channel distance between adjacent images. The width of a channel might be different from the
frequency distance, for example because two observations with partially overlapping channels are imaged together. If
the first observation has a channel at 1.0 GHz of width 0.2 GHz, and the second observation has a channel at 1.1 GHz
of width 0.2 GHz, and they fall into the same output channel, the output image will show CDELT3 = 0.3 GHz, because
it covers 0.9 GHz up to 1.2 GHz.

7.5.2 WSClean-specific keywords

WSClean adds the following non-standard keywords to its output FITS files:

WSCVERSI -- Version string for WSClean, e.g. "2.5.1" (since WSClean 2.5).
WSCVDATE -- Version date of WSClean, e.g. "2017-05-08" (since WSClean 2.5).
WSCNWLAY -- nwlayers

WSCDATAC -- data column

WSCWEIGH -- weighting (textual description, e.g. uniform or Briggs'(0.5))
WSCGKRNL -- gridding (antialiasing) kernel size

WSCCHANS / WSCCHANE -- channel range (only when specified)

WSCTIMES / WSCTIMEE -- time range (only when specified)

WSCFIELD -- imaged field number in MS

WSCNVIS -- gridded visibility count

WSCENVIS -- effective nr of visibilities (only for natural weighting)
WSCVWSUM -- sum of visibility weight (since WSClean 2.3)

WSCIMGWG -- Weight to be used when averaging images together

(continues on next page)

7.5. FITS keywords 93

WSClean, Release git

(continued from previous page)

WSCNORMF -- Normalization factor that was applied to the image. The factor is
useful to undo the normalization for e.g. conversion to Kelvins.
WSCNORMF is available since WSClean 2.

WSCTHRES -- Manually applied threshold

Cleaning

WSCNITER -- max number of iterations specified

WSCGAIN -- clean gain (minor iteration gain)

WSCMGAIN -- major cleaning gain

WSCNEGCM -- whether negative components were allowed to clean

WSCNEGST -- whether stopping on first negative component during clean

WSCMAJOR -- number of major iterations actually used before reaching stopping criteria
WSCMINOR -- number of minor iterations actually used before reaching stopping criteria

The actually used number of major/minor iterations are stored in WSCMAJOR and WSCMINOR, whereas WSCMGAIN and
WSCNITER describe the input parameters.

No longer used

WSCSMPSF -- whether the PSF is made smaller prior to cleaning

7.6 Computational performance

This chapter explains some of the ideas to speed up imaging. If you are looking to speed up imaging, you should
first determine if your imaging is dominated by gridding or by deconvolution. WSClean outputs the speed of gridding
(prediction + inversion) and deconvolution at the end of a run.

7.6.1 Gridder

The biggest choice to make that typically affects computational performance the most is what gridder to use. The
default gridder, the w-stacking gridder, is very fast for relatively small images (up to about 5k), in particular when it
can be combined with the -parallel-gridding option. When parallel gridding is not possible, or when image sizes
are reasonably large (say 5k-10k), the w-gridder might be a better choice. That gridder has the additional advantage that
itis (much!) more accurate compared to the default gridder, although the level of accuracy of the w-stacking gridder is
good enough for most science cases to not be a concern. Finally, for big images the idg can be even faster, in particular
when gpus are available.

Each gridder performs different for different imaging setups: image size, number of visibilities, size of w-terms, res-
olution, these all impact the performance of the various gridders in different ways. Therefore, to really know which
gridder is most efficient I recommend timing each of them.

94 Chapter 7. Technical details

WSClean, Release git

7.6.2 General improvements

A few generic tips to speed up processing:
» Use parallel deconvolution.
* If the deconvolution is a bottleneck, don’t use multi-scale if you don’t need it.
* Use the parallel reordering option.
* When using w-stacking, use the parallel gridding option.
* Or even better, irregardless of the gridder, parallellize over multiple nodes using wsclean-mp.
* When using a-terms, make sure to keep your a-term kernel as small as possible (see a-term correction).

* Do not include baselines that provide a resolution higher than the imaging resolution. Despite that these baselines
fall outside of the uv-plane, and therefore are discarded and don’t affect performance, at lower elevations these
baselines might still fall inside the uv plane and might have very large w-terms. Yet they don’t contribute to
imaging quality or the resolution. The best way to filter these baselines is using a -maxuvw-m limit. One use-case
where this is important is when the international LOFAR baselines are present in the observation, but imaging
is done at lower resolution (e.g. up to 2”).

* Don’t split your data in too many measurement sets. For example, keeping each LOFAR subband in a sepa-
rate measurement set and imaging the full bandwidth is not efficient. Better is to use DP3 to concatenate the
frequencies into only a few measurement sets and image those.

7.6.3 w-stacking

The w-stacking gridder of WSClean has very different performance characteristics to for example the w-projection
algorithm. When wsclean is executed on a machine that does not have enough memory to store all w-layers at once in
memory, the program will make several passes over your measurement set; in the first pass it will grid and FFT only the
layers with lowest w terms, in the second pass it will process the data with second-lowest w-terms, etc. A few passes
typically do not slow down the imaging much, but if on the order of ten or more passes are executed, the performance
might no longer be acceptable. In that case you can:

* Decrease the number of w-layers (possibly by change the phase centre to zenith); or
* Decrease the size of your image; or
* Use a machine with more memory.

WSClean makes by default use of the small inversion optimalization <small_inversion>.

In the w-projection algorithm, the number of w-layers hardly affects the speed of the algorithm. However, in w-stacking
it is almost linear in the number of w-layers. Hence, you should not make this number larger than necessary. If the
observation has large w-values, because it is far off-zenith, a large number of w-layers might be required. Note that
the w-projection algorithm will in such a case have a very large w-kernel as well, and becomes also extremely slow. In
such cases it might be better to change the phase centre before imaging: see the chgcentre documentation.

7.6. Computational performance 95

WSClean, Release git

7.7 w-stacking interface

WSClean’s gridder is inside a single C++ unit file and is written to be modular. Therefore, it is not hard to integrate
and reuse it in other software. The gridder can do both prediction and inversion.

The gridder is only a small part of the WSClean imager, and handles the low-level placing of visibilities on the uv-
grid and the involved FFTs (inversion), or the other way around; predicting visibilities from a model image. There
are also higher-level interfaces to WSClean, which support calling the whole WSClean program, including cleaning
and handling measurement sets etc. If you need cleaning and/or your data is in the measurement set format, it might
be useful to use other interfaces instead. However, if you would like to use the low-level interface, the following
information might be useful.

Since WSClean 1.9, the gridder is contained in the unit file wsclean/wstackinggridder.cpp and its header
wsclean/wstackinggridder.h. The header has extensive code documentation that should give enough informa-
tion about how to call the gridder. You can create the Doxygen documentation for this class with a “make doc” within
the build dir (which places the info in build/doc/html/index.html, etc). The code documentation can also be found here:

» WStackingGridder class API

The gridder can be compiled with two external libraries: FFTW and Boost. To avoid a Casacore dependency, you need
to define AVOID_CASACORE while compiling the gridder. There’s a prediction example in wsclean/examples called
“wspredictionexample.cpp)”’, which can be compiled with:

g++ -0 wspredictionexample -03 -march=native -pthread \
-I ../../external/aocommon/include/ \
-DAVOID_CASACORE \
wspredictionexample.cpp \
../wstackinggridder.cpp \
-1fftw3f -1fftw3 -1fftw3f_threads -1lfftw3_threads \
-1boost_date_time -lboost_system

This assumes you are in the wsclean/examples subdirectory. There’s a separate makefile for this: ws-
clean/examples/Makefile.

The prediction example shows how to initialize the gridder and get visibility samples from it and includes inline doc-
umentation, so should be a good starting point for using the gridder.

7.8 Storing imaging weights

WSClean offers the option -store-imaging-weights (since WSClean 2.5) to store the imaging weights in a column
named IMAGING_WEIGHT_SPECTRUM. Its use is very similar to the IMAGING_WEIGHT column that CASA uses, but
WSClean stores the imaging weights per polarization and channel, instead of only per channel as CASA does. The
weights are written only when this parameter is given, and are not written by default (for reasons of performance).

96 Chapter 7. Technical details

http://www.andreoffringa.org/wsclean/doxygen/classWStackingGridder.html
https://gitlab.com/aroffringa/wsclean/-/blob/development/wsclean/examples/wspredictionexample.cpp

WSClean, Release git

7.8.1 Meaning of weight values

The values in IMAGING_WEIGHT_SPECTRUM are relative unnormalized weights, and exclude the visibility weights
that are stored in WEIGHT_SPECTRUM. Hence, the desired weighting is achieved by multiplying the values in
IMAGING_WEIGHT_SPECTRUM by values in WEIGHT_SPECTRUM. To convert a sum of weighted values back to proper
units, the weighted sum should be divided by the sum of weights. The IMAGING_WEIGHT_SPECTRUM values will be set
to unity when requesting natural weighting (without tapers). Any kind of weighting, tapering and weighting rank-filter
is taken into account in the weights.

7.8.2 Polarizations and writing

The values are written/updated during the first inversion. Currently, imaging weight values are only updated when
reordering is disabled with -no-reorder. This is hopefully fixed in a later version. Because no-reordering is often
slower, if you need imaging weights the best approach is to only make a dirty image with the appropriate weighting.

Weights can only be stored when either imaging a one-to-one polarization in the measurement set, or when imaging
Stokes I in a circular or linearly polarized measurement set. For example, in the case the measurement set contains
XX/XY/YX/YY polarizations, one can request weights when imaging any of those polarizations, or when imaging
Stokes I, but not when imaging stokes Q/U/V or LL/LR/.. polarizations. Polarizations that are not imaged will not be
changed. Imaging Stokes I in a set with LL/RR or XX/YY polarizations will set the weights of the two polarizations
(i.e. both LL/RR or both XX/YY, respectively).

7.9 DS9 region file

The tessellation of an image into polygon-shaped geometries - coined facets - can be controlled with a DS9 region
file. The generic region file format is documented at http://ds9.si.edu/doc/ref/region.html, this pages describes which
subset of the region file can be parsed by WSClean and DP3 for the specific use case of tessellating the sky for direction-
dependent calibration.

This page provides user documentation. For in-depth technical details, please consult the class responsible for parsing
the facet file.

7.9.1 Defining a facet

Facets are specified using “polygons”, where the (ra,dec) coordinates of the polygon vertices are specified sequentially,
ie.

polygon(ra_0, dec_®, ..., ..., ra_n, dec_n)

Please bear in mind:
e the (ra,dec) coordinates should be given in degrees;
* a polygon can have an arbitrary number of vertices;
« the start and end vertices of the polygon need not to coincide;

* the vertices can be placed in arbitrary order (i.e. clockwise or counter-clockwise);

7.9. DS9 region file 97

http://ds9.si.edu/doc/ref/region.html
https://gitlab.com/aroffringa/wsclean
https://git.astron.nl/RD/DP3/
https://git.astron.nl/RD/schaapcommon/-/blob/master/include/schaapcommon/facets/ds9facetfile.h
https://git.astron.nl/RD/schaapcommon/-/blob/master/include/schaapcommon/facets/ds9facetfile.h

WSClean, Release git

7.9.2 Adding a text label

Optionally, a polygon can be equipped with a text label and/or a specific point of interest. The text label should be
specified on the same line as the polygon to which it should be attached and should be preceded by a #. A valid
polygon + label definition thus looks like:

polygon(ra_0, dec_®, ..., ..., ra_n, dec_n) # text="ABCD"

In DP3, this label can be used to refer to the facet. For example, ddecal .modelnextsteps.ABCD=[applybeam]
implies that the beam is only applied to direction ABCD.

7.9.3 Adding a facet point of interest

By default the facet point of interest is the centroid of the facet. To override this behaviour, a point can be attached
to a polygon to mark a specific point of interest. This can be useful to explicitly mark the position on which direction
dependent effects (DDEs) should be evaluated.

Analogous to the polygon definition, the point coordinates are provided in (ra,dec) in degrees. A point should
be placed on a new line, following the polygon definition, i.e.:

polygon(ra_0, dec_®, ..., ..., ra_n, dec_n) # text="ABCD"
point(ra_A,dec_A)

Only one point can be attached per polygon. In case multiple points were specified, the last one will be used. So in
the following example:

polygon(ra_®, dec_®, ..., ..., ra_n, dec_n) # text="ABCD"
point(ra_A,dec_A)
point(ra_B,dec_B)

the point(ra_A,dec_A) is ignored and point (ra_B,dec_B) will be used.

7.9.4 Example facet file

Below a full example of a facet file in DS9 region file format along with its graphical representation is shown. A user-
defined point as well as a label is attached to three of the facets, the upper left facet has neither of these. Obviously, the
facet definitions serve illustration purposes only and are otherwise impractical, as they are disjoint and do not cover the
full image domain.

Region file format: DS9 version 4.1

global color=green dashlist=8 3 width=1 font="helvetica 10 normal roman" select=1.
—highlite=1 dash=0 fixed=0 edit=1 move=1 delete=1 include=1 source=1

fk5

The polygons below were created manually. They create areas around each of the image.
—points.
The comments below contain the corresponding 0-based pixel coordinates.

The 'point' values are artifical values, for testing DS9FacetFile only.
These points are selected such that they coincide with one of the vertices that

are not located on the boundary.

Ra+dec@(400,64). Polygon is (379,-9) (377,91) (548,95) (551,-5).

(continues on next page)

98 Chapter 7. Technical details

WSClean, Release git

(continued from previous page)

polygon(23.0,30.5, 23.0,31.5, 21.0,31.5, 21.0,30.5) # text=CygA
point(23.0,31.5)

Ra@(400,256). Polygon is (364,129) (366,301) (541,305) (547,128).
polygon(23.15,31.88, 23.10,33.6, 21.0,33.6, 21.0,31.83) # text=CygAO
point(23.10,33.6)

Dec@(256,64). Polygon is (128,-9) (128,128) (384,128) (384,-9).
polygon(25.91,30.5, 25.93,31.87, 22.92,31.87, 22.94,30.5) # text=CygTJ
Test that the reader uses the last point when supplying multiple.
point(®, 0)

point(22.92,31.87)

Center@(256,256). Polygon is (160,160) (160,352) (352,352) (352,160).
polygon(25.56,32.19 25.58,34.11, 23.26,34.11, 23.29,32.19)
No explicit point -> RA() and Dec() should be nan.

For debugging: Region that covers everything.
#polygon(33.0,27.0, 33.0,40.0, 17.0,40.0, 17.0,27.0)

7.9. DS9 region file 99

WSClean, Release git

100 Chapter 7. Technical details

CHAPTER
EIGHT

FURTHER INFORMATION

8.1 Citing WSClean

If you use WSClean for scientific work, please cite the Offringa et al. (2014) WSClean paper. The multi-scale, multi-
frequency and auto-masking algorithms are described in a second paper: Offringa & Smirnov (2017). When using
IDG, please also cite Van der Tol, Veenboer & Offringa (2018).

8.1.1 bibtexs

bibtexs are given below.

Offringa et al. 2014

@article{offringa-wsclean-2014,

author = {Offringa, A. R. and McKinley, B. and Hurley-Walker and others},

title = {{WSClean: an implementation of a fast, generic wide-field imager for radio.
—,astronomy}},

volume = {444},

number = {1},

pages = {606-619},

year = {2014},

doi = {10.1093/mnras/stul368},
journal = {MNRAS}

Offringa & Smirnov 2017

@article{offringa-wsclean-2017,

author = {Offringa, A. R. and Smirnov, 0.},

title = {{An optimized algorithm for multiscale wideband deconvolution of radio..
—.astronomical images}},

volume = {471},

number = {1},

pages = {301-316},

year = {2017},

doi = {10.1093/mnras/stx1547},

(continues on next page)

101

http://arxiv.org/abs/1407.1943
http://arxiv.org/abs/1706.06786
https://arxiv.org/abs/1909.07226

WSClean, Release git

(continued from previous page)

journal = {MNRAS}

}

Van der Tol, Veenboer & Offringa (2018)

@article{vandertol-2018,
author = {Van der Tol, Sebastiaan and Veenboer, Bram and Offringa, Andr\'e R.},
title = {Image Domain Gridding: a fast method for convolutional resampling of.

—visibilities},

DOI= "10.1051/0004-6361/201832858",

url= "https://doi.org/10.1051/0004-6361/201832858",
journal = {A\&A},

year = 2018,

volume = 616,

pages = "A27",

}

Other resources:

Debian WSClean tracker

Lists the current status of the WSClean Debian package.
LOFAR Imaging Cookbook

Provides LOFAR-specific info.

Offringa et al. 2014

The original WSClean paper.

Offringa & Smirnov 2017

The MF multi-scale clean & auto-masking algorithms.
Van der Tol, Veenboer & Offringa (2018)

IDG overview paper.

Veenboer, Petschow & Romein (2018)

IDG on Graphics Processors.

Offringa et al. (2019)

Assessment of gridding accuracy for 21-cm Epoch of Reionization experiments.

See also: Citing WSClean

To contact me, mail me on offringa at gmail dot com.

Many people have greatly helped the development of WSClean by submitting bug reports, feature requests, ideas and
patches, for which I am very grateful. Bas van der Tol and Bram Veenboer have in particular contributed a lot to
WSClean.

102

Chapter 8. Further information

https://tracker.debian.org/pkg/wsclean
https://support.astron.nl/LOFARImagingCookbook
http://arxiv.org/abs/1407.1943
http://arxiv.org/abs/1706.06786
https://arxiv.org/abs/1909.07226
https://ieeexplore.ieee.org/document/7967145
https://arxiv.org/abs/1908.11232

CHAPTER
NINE

NAVIGATE

* genindex

e search

103

	Getting started
	Introduction
	Change logs
	Version 3 releases
	WSClean version 3.1
	Major & visible changes
	Bug fixes
	Other significant code changes

	WSClean version 3.0
	Major & visible changes
	Bug fixes
	Other significant code changes

	Version 2 releases
	WSClean version 2.10
	WSClean version 2.9
	WSClean version 2.8
	WSClean version 2.7
	WSClean version 2.6
	WSClean version 2.5
	WSClean version 2.4
	WSClean Version 2.3
	WSClean Version 2.2
	WSClean Version 2.1
	WSClean Version 2.0

	Version 1 releases
	WSClean Version 1.12
	WSClean Version 1.11
	WSClean Version 1.10
	WSClean Version 1.9
	WSClean Version 1.8
	WSClean Version 1.7
	WSClean Version 1.6
	WSClean Version 1.5
	WSClean Version 1.4
	WSClean Version 1.3
	WSClean Version 1.2 and 1.2.1
	WSClean Version 1.1
	WSClean Version 1.0

	Installation instructions
	Getting the source code
	Manual compilation
	Installed files
	On Ubuntu and Debian
	On Red Hat
	Linking errors
	Compiling platform independently / portability
	Using the LOFAR/MWA/… beam
	The MWA beam
	Installation of WSClean on Red Hat-based systems
	CentOS 8
	WSClean 2.7 on Red Hat 7.6
	Download the packages
	Install fftw
	Install Casacore
	Install WSClean 2.7
	Check WSClean

	General usage
	Multiple measurement sets
	An advanced MWA example

	Basic cleaning
	Image dimensions
	Threshold and maximum number of iterations
	Automatic threshold
	Using Cotton-Schwab: the -mgain parameter

	Prediction
	Frequency information during prediction
	Some MWA specifics

	Self-calibration
	Image-based self-calibration
	Self-calibration from existing image
	Polarized imaging & calibration
	CASA on-the-fly mode

	Weighting
	Image weighting
	Uniform weighting
	Natural weighting
	Briggs’ weighting
	Super-uniform and super-Briggs weighting
	Weighting rank filter
	Relation to visibility weights
	Other weighting-related settings

	Tapering
	Gaussian taper
	Tukey taper

	Multi-frequency weighting
	Weight rank filter
	Effect & improvement
	Syntax
	Related topics

	Imaging modes
	Making image cubes
	Snapshot imaging
	w-snapshot algorithm
	chgcentre
	Legacy data with -shiftback applied
	A LOFAR bug

	Baseline-dependent averaging
	Baseline-dependent averaging in WSClean
	Setting the averaging factor
	Further options
	Baseline-dependent averaging in DP3
	Some LOFAR specifics

	Continuing a deconvolution
	Syntax
	Example: change weighting
	What -continue really does
	Difference with -subtract-model
	Reusing PSF / dirty image

	Distributed imaging
	Primary beam correction
	Supported telescopes
	Beam sensitivity limit
	LOFAR specifics
	Full beam correction
	Differential beam

	MWA specifics
	Time-varying beams
	Installation information

	Facet-based imaging
	Availability
	Command-line options
	Example command
	Caveats

	Gridding modes
	Image domain gridding
	Considerations
	Command-line options
	Gridding with the beam
	Polarization settings for IDG
	Performance
	Advanced a-term corrections
	Information for older IDG versions

	A-Term correction
	Gridding with a-term screens
	Kernel size
	TEC correction
	dldm gain correction
	Diagonal gain correction
	Analyzing / saving the a-terms

	Combining pointings
	Setting the phase centre
	Gridding with the beam
	PAF settings
	Other image settings

	W-gridding

	Deconvolution modes
	Masks and auto-masking
	Providing a mask
	Auto-masking
	Combining auto-masking with a regular mask
	Availability
	References

	Local RMS thresholding
	Auto-generated RMS map
	Using a pre-existing RMS map

	Wideband deconvolution
	Usage
	Multiple measurement sets and subbands
	Fitting smooth spectra
	Forced spectral indices
	Fit normal or logarithmic polynomials?
	Avoiding “steps” in the model data visibilities
	Relation to CASA’s multi-term deconvolution

	Polarimetric deconvolution
	Linking polarizations

	Rotation-measure (RM) synthesis
	Basic RM-synthesis imaging
	Using entire bandwidth for cleaning QU cubes
	What is calculated?
	Availability

	Multi-scale cleaning
	Introduction
	Bias parameter
	Multi-scale with multi-frequency or polarimetric cleaning
	Masks
	References
	History

	IUWT compressed sensing
	Relation to MORESANE
	Usage

	MORESANE deconvolution
	Using MORESANE
	History

	Parallel deconvolution
	Implementation

	Results & problems
	Imaging artefacts
	W-term correction

	Diverging clean
	Causes & solutions

	Technical details
	Component lists
	File format
	The columns
	History

	Weighting and gridding
	Weighting
	Gridding

	Restoring beam size
	Highly elliptical restoring beams
	History

	Polarizations and weights
	Calculating Stokes I values
	Visibility weights

	FITS keywords
	Meaning of frequency keywords
	WSClean-specific keywords
	Cleaning
	No longer used

	Computational performance
	Gridder
	General improvements
	w-stacking

	w-stacking interface
	Storing imaging weights
	Meaning of weight values
	Polarizations and writing

	DS9 region file
	Defining a facet
	Adding a text label
	Adding a facet point of interest
	Example facet file

	Further information
	Citing WSClean
	bibtexs
	Offringa et al. 2014
	Offringa & Smirnov 2017
	Van der Tol, Veenboer & Offringa (2018)

	Navigate

